中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
PROJECTIVE MODULE DESCRIPTION OF EMBEDDED NONCOMMUTATIVE SPACES

文献类型:期刊论文

作者Zhang, R. B.1; Zhang, Xiao2
刊名REVIEWS IN MATHEMATICAL PHYSICS
出版日期2010-06-01
卷号22期号:5页码:507-531
关键词Noncommutative space projective module isometric embedding
ISSN号0129-055X
DOI10.1142/S0129055X10004028
英文摘要An algebraic formulation is given for the embedded noncommutative spaces over the Moyal algebra developed in a geometric framework in [8]. We explicitly construct the projective modules corresponding to the tangent bundles of the embedded noncommutative spaces, and recover from this algebraic formulation the metric, Levi-Civita connection and related curvatures, which were introduced geometrically in [8]. Transformation rules for connections and curvatures under general coordinate changes are given. A bar involution on the Moyal algebra is discovered, and its consequences on the noncommutative differential geometry are described.
资助项目Australian Research Council ; National Science Foundation of China[10421001] ; National Science Foundation of China[10725105] ; National Science Foundation of China[10731080] ; NKBRPC[2006CB805905] ; Chinese Academy of Sciences
WOS研究方向Physics
语种英语
WOS记录号WOS:000278499600002
出版者WORLD SCIENTIFIC PUBL CO PTE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/10536]  
专题数学所
通讯作者Zhang, R. B.
作者单位1.Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
2.Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, R. B.,Zhang, Xiao. PROJECTIVE MODULE DESCRIPTION OF EMBEDDED NONCOMMUTATIVE SPACES[J]. REVIEWS IN MATHEMATICAL PHYSICS,2010,22(5):507-531.
APA Zhang, R. B.,&Zhang, Xiao.(2010).PROJECTIVE MODULE DESCRIPTION OF EMBEDDED NONCOMMUTATIVE SPACES.REVIEWS IN MATHEMATICAL PHYSICS,22(5),507-531.
MLA Zhang, R. B.,et al."PROJECTIVE MODULE DESCRIPTION OF EMBEDDED NONCOMMUTATIVE SPACES".REVIEWS IN MATHEMATICAL PHYSICS 22.5(2010):507-531.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。