The gradient flow of Higgs pairs
文献类型:期刊论文
作者 | Li, Jiayu2,3![]() |
刊名 | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY
![]() |
出版日期 | 2011 |
卷号 | 13期号:5页码:1373-1422 |
关键词 | Higgs bundles Kahler surface Harder-Narasimhan-Seshadri filtration |
ISSN号 | 1435-9855 |
DOI | 10.4171/JEMS/284 |
英文摘要 | We consider the gradient flow of the Yang-Mills-Higgs functional of Higgs pairs on a Hermitian vector bundle (E, H-0) over a Kahler surface (M, omega), and study the asymptotic behavior of the heat flow for Higgs pairs at infinity. The main result is that the gradient flow with initial condition (A(0), phi(0)) converges, in an appropriate sense which takes into account bubbling phenomena, to a critical point (A(infinity,) phi(infinity)) of this functional. We also prove that the limiting Higgs pair (A(infinity), phi(infinity)) can be extended smoothly to a vector bundle E-infinity over (M, omega) and the isomorphism class of the limiting Higgs bundle (E-infinity, A(infinity), phi(infinity)) is given by the double dual of the graded Higgs sheaves associated to the Harder-Narasimhan-Seshadri filtration of the initial Higgs bundle (E, A(0), phi(0)). |
资助项目 | NSF in China[10771188] ; Ministry of Education[20060335133] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000295714100006 |
出版者 | EUROPEAN MATHEMATICAL SOC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/11816] ![]() |
专题 | 数学所 |
通讯作者 | Zhang, Xi |
作者单位 | 1.Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China 2.Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China 3.Chinese Acad Sci, AMSS, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Jiayu,Zhang, Xi. The gradient flow of Higgs pairs[J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY,2011,13(5):1373-1422. |
APA | Li, Jiayu,&Zhang, Xi.(2011).The gradient flow of Higgs pairs.JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY,13(5),1373-1422. |
MLA | Li, Jiayu,et al."The gradient flow of Higgs pairs".JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY 13.5(2011):1373-1422. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。