中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Cubic E-6-Generalization of the Classical Theorem on Harmonic Polynomials

文献类型:期刊论文

作者Xu, Xiaoping
刊名JOURNAL OF LIE THEORY
出版日期2011
卷号21期号:1页码:145-164
关键词Harmonic polynomial E-6 Lie algebra irreducible module Dickson invariant invariant differential operator solution space
ISSN号0949-5932
英文摘要Classical harmonic analysis says that the spaces of homogeneous harmonic polynomials (solutions of Laplace equation) are irreducible modules of the corresponding orthogonal Lie group (algebra) and the whole polynomial algebra is a free module over the invariant polynomials generated by harmonic polynomials. Dickson invariant trilinear form is the unique fundamental invariant in the polynomial algebra over the basic irreducible module of E-6. In this paper, we prove that the space of homogeneous polynomial solutions with degree in for the dual cubic Dickson invariant differential operator is exactly a direct sum of [m/2] + 1 explicitly determined irreducible E-6-submodules and the whole polynomial algebra is a free module over the polynomial algebra in the Dickson invariant generated by these solutions. Thus we obtain a cubic E-6-generalization of the above classical theorem on harmonic polynomials.
语种英语
WOS记录号WOS:000288050000007
出版者HELDERMANN VERLAG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/12108]  
专题数学所
通讯作者Xu, Xiaoping
作者单位Chinese Acad Sci, Hua Loo Keng Key Math Lab, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Xu, Xiaoping. A Cubic E-6-Generalization of the Classical Theorem on Harmonic Polynomials[J]. JOURNAL OF LIE THEORY,2011,21(1):145-164.
APA Xu, Xiaoping.(2011).A Cubic E-6-Generalization of the Classical Theorem on Harmonic Polynomials.JOURNAL OF LIE THEORY,21(1),145-164.
MLA Xu, Xiaoping."A Cubic E-6-Generalization of the Classical Theorem on Harmonic Polynomials".JOURNAL OF LIE THEORY 21.1(2011):145-164.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。