Strongly indefinite functionals and multiple solutions of elliptic systems
文献类型:期刊论文
作者 | De Figueiredo, DG; Ding, YH![]() |
刊名 | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
![]() |
出版日期 | 2003 |
卷号 | 355期号:7页码:2973-2989 |
关键词 | elliptic system multiple solutions critical point theory |
ISSN号 | 0002-9947 |
英文摘要 | We study existence and multiplicity of solutions of the elliptic system (GRAPHICS) where Omega subset of R-N; Ngreater than or equal to3, is a smooth bounded domain and His an element ofC(1) ((Omega) over barx R-2, R). We assume that the nonlinear term (GRAPHICS) where p is an element of (1, 2*), 2* := 2N/(N-2), and q is an element of (1,infinity). So some supercritical systems are included. Nontrivial solutions are obtained. When H(x, u, v) is even in (u, v), we show that the system possesses a sequence of solutions associated with a sequence of positive energies (resp. negative energies) going toward infinity (resp. zero) if p>2 (resp. p<2). All results are proved using variational methods. Some new critical point theorems for strongly indefinite functionals are proved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000182170300018 |
出版者 | AMER MATHEMATICAL SOC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/18959] ![]() |
专题 | 数学所 |
通讯作者 | De Figueiredo, DG |
作者单位 | 1.Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil 2.Chinese Acad Sci, AMSS, Inst Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | De Figueiredo, DG,Ding, YH. Strongly indefinite functionals and multiple solutions of elliptic systems[J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY,2003,355(7):2973-2989. |
APA | De Figueiredo, DG,&Ding, YH.(2003).Strongly indefinite functionals and multiple solutions of elliptic systems.TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY,355(7),2973-2989. |
MLA | De Figueiredo, DG,et al."Strongly indefinite functionals and multiple solutions of elliptic systems".TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 355.7(2003):2973-2989. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。