中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Representations of E-7, equivalent combinatorics and algebraic varieties

文献类型:期刊论文

作者Xu, Xiaoping1,2
刊名JOURNAL OF ALGEBRA AND ITS APPLICATIONS
出版日期2018-03-01
卷号17期号:3页码:22
关键词Inhomogeneous representation simple Lie algebra E-7 exponential-polynomial function equivalent combinatorics algebraic variety
ISSN号0219-4988
DOI10.1142/S0219498818500457
英文摘要In our earlier work on a new functor from E-6-Mod to E-7-Mod, we found a oneparameter (c) family of inhomogeneous first-order differential operator representations of the simple Lie algebra of type E-7 in 27 variables. Letting these operators act on the space of exponential-polynomial functions that depend on a parametric vector (a) over right arrow epsilon C-27 \{(0) over right arrow}, we prove that the space forms an irreducible E-7-module for any c epsilon C if (a) over right arrow is not on an explicitly given projective algebraic variety. Certain equivalent combinatorial properties of the basic oscillator representation of E-6 over its 27-dimensional module play key roles in our proof. Our result can also be used to study free bosonic field irreducible representations of the corresponding affine Kac-Moody algebra.
语种英语
WOS记录号WOS:000424255100007
出版者WORLD SCIENTIFIC PUBL CO PTE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/29371]  
专题数学所
通讯作者Xu, Xiaoping
作者单位1.Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Xu, Xiaoping. Representations of E-7, equivalent combinatorics and algebraic varieties[J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS,2018,17(3):22.
APA Xu, Xiaoping.(2018).Representations of E-7, equivalent combinatorics and algebraic varieties.JOURNAL OF ALGEBRA AND ITS APPLICATIONS,17(3),22.
MLA Xu, Xiaoping."Representations of E-7, equivalent combinatorics and algebraic varieties".JOURNAL OF ALGEBRA AND ITS APPLICATIONS 17.3(2018):22.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。