Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
文献类型:期刊论文
作者 | Ding, Zhaodong1; Shang, Zaijiu2,3![]() |
刊名 | SCIENCE CHINA-MATHEMATICS
![]() |
出版日期 | 2018-09-01 |
卷号 | 61期号:9页码:1567-1588 |
关键词 | Hamiltonian systems symplectic integrators KAM theory invariant tori twist symplectic mappings Russmann's non-degeneracy |
ISSN号 | 1674-7283 |
DOI | 10.1007/s11425-018-9311-7 |
英文摘要 | In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Russmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an estimate of the measure of the set occupied by the invariant tori in the phase space. On an invariant torus, numerical solutions are quasi-periodic with a diophantine frequency vector of time step size dependence. These results generalize Shang's previous ones (1999, 2000), where the non-degeneracy condition is assumed in the sense of Kolmogorov. |
资助项目 | National Natural Science Foundation of China[11671392] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000442229900003 |
出版者 | SCIENCE PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/31071] ![]() |
专题 | 数学所 |
通讯作者 | Ding, Zhaodong |
作者单位 | 1.Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, HUA Loo Keng Key Lab Math, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Ding, Zhaodong,Shang, Zaijiu. Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems[J]. SCIENCE CHINA-MATHEMATICS,2018,61(9):1567-1588. |
APA | Ding, Zhaodong,&Shang, Zaijiu.(2018).Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems.SCIENCE CHINA-MATHEMATICS,61(9),1567-1588. |
MLA | Ding, Zhaodong,et al."Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems".SCIENCE CHINA-MATHEMATICS 61.9(2018):1567-1588. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。