Multiple positive solutions for a critical growth problem with Hardy potential
文献类型:期刊论文
作者 | Han, PG![]() |
刊名 | PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY
![]() |
出版日期 | 2006-02-01 |
卷号 | 49页码:53-69 |
关键词 | positive solution subsolution and supersolution Palais-Smale condition critical Sobolev exponent |
ISSN号 | 0013-0915 |
DOI | 10.1017/S0013091504001464 |
英文摘要 | In this paper we study the existence and nonexistence of multiple positive solutions for the Dirichlet problem: -Delta u-u/\x\(2) = lambda(1 + u)(p), u > 0, u is an element of H-0(1)(Omega), (*) where 0 <= mu < (1/2 (N-2))(2), lambda > 0, 1 < p <= (N+2)/(N-2), N >= 3. Using the sub-supersolution method and the variational approach, we prove that there exists a positive number lambda* such that problem (*) possesses at least two positive solutions if lambda is an element of (0, lambda*), a unique positive solution if lambda = lambda*, and no positive solution if lambda is an element of (lambda*, infinity). |
语种 | 英语 |
WOS记录号 | WOS:000235872500005 |
出版者 | CAMBRIDGE UNIV PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/3200] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Han, PG |
作者单位 | Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Han, PG. Multiple positive solutions for a critical growth problem with Hardy potential[J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY,2006,49:53-69. |
APA | Han, PG.(2006).Multiple positive solutions for a critical growth problem with Hardy potential.PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY,49,53-69. |
MLA | Han, PG."Multiple positive solutions for a critical growth problem with Hardy potential".PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY 49(2006):53-69. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。