Splitting finite difference methods on staggered grids for the three-dimensional time-dependent Maxwell equations
文献类型:期刊论文
作者 | Gao, Liping2; Zhang, Bo1![]() |
刊名 | COMMUNICATIONS IN COMPUTATIONAL PHYSICS
![]() |
出版日期 | 2008-08-01 |
卷号 | 4期号:2页码:405-432 |
关键词 | splitting scheme alternating direction implicit method finite-difference time-domain method stability convergence Maxwell's equations perfectly conducting boundary |
ISSN号 | 1815-2406 |
英文摘要 | In this paper, we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain. We propose a new kind of splitting finite-difference time-domain schemes on a staggered grid, which consists of only two stages for each time step. It is proved by the energy method that the splitting scheme is unconditionally stable and convergent for problems with perfectly conducting boundary conditions. Both numerical dispersion analysis and numerical experiments are also presented to illustrate the efficiency of the proposed schemes. |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000258445800009 |
出版者 | GLOBAL SCIENCE PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/6369] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Zhang, Bo |
作者单位 | 1.Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China 2.Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China 3.York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada |
推荐引用方式 GB/T 7714 | Gao, Liping,Zhang, Bo,Liang, Dong. Splitting finite difference methods on staggered grids for the three-dimensional time-dependent Maxwell equations[J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS,2008,4(2):405-432. |
APA | Gao, Liping,Zhang, Bo,&Liang, Dong.(2008).Splitting finite difference methods on staggered grids for the three-dimensional time-dependent Maxwell equations.COMMUNICATIONS IN COMPUTATIONAL PHYSICS,4(2),405-432. |
MLA | Gao, Liping,et al."Splitting finite difference methods on staggered grids for the three-dimensional time-dependent Maxwell equations".COMMUNICATIONS IN COMPUTATIONAL PHYSICS 4.2(2008):405-432. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。