Stochastic differential equations with coefficients in Sobolev spaces
文献类型:期刊论文
作者 | Fang, Shizan1; Luo, Dejun2,3![]() |
刊名 | JOURNAL OF FUNCTIONAL ANALYSIS
![]() |
出版日期 | 2010-09-01 |
卷号 | 259期号:5页码:1129-1168 |
关键词 | Stochastic flows Sobolev space coefficients Density Density estimate Pathwise uniqueness Gaussian measure Ornstein-Uhlenbeck semigroup |
ISSN号 | 0022-1236 |
DOI | 10.1016/j.jfa.2010.02.014 |
英文摘要 | We consider the Ito stochastic differential equation dX(t) = Sigma(m)(j=1) A(j) dw(i)(j) + A0(X(i)) dt on R(d). The diffusion coefficients A1,..., A(m) are supposed to be in the Sobolev space W(loc)(i,p)(R(d)) with p > d, and to have linear growth. For the drift coefficient Ao, we distinguish two cases: (i) A(0) is a continuous vector field whose distributional divergence delta(A(0)) with respect to the Gaussian measure gamma(d) exists, (ii) A(0) has Sobolev regularity W(loc)(i,p) for some p' > I. Assume f(R)d exp[lambda(0)(vertical bar delta(A(0))vertical bar EniL (16(Ai)12 + vAi 12))1 dvd < +00 for some lambda(0) > 0. In case (i), if the pathwise uniqueness of solutions holds, then the push-forward (X(t))#gamma d admits a density with respect to gamma(d). In particular, if the coefficients are bounded Lipschitz continuous, then X(t) leaves the Lebesgue measure Leb(d) quasi-invariant. In case (ii), we develop a method used by G. Crippa and C. De Lellis for ODE and implemented by X. Zhang for SDE, to establish existence and uniqueness of stochastic flow of maps. (C) 2010 Elsevier Inc. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000278700900003 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/9651] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Fang, Shizan |
作者单位 | 1.Univ Bourgogne, IMB, Dijon, France 2.Univ Luxembourg, UR Math, L-1359 Luxembourg, Luxembourg 3.Chinese Acad Sci, Key Lab Random Complex Struct & Data Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Fang, Shizan,Luo, Dejun,Thalmaier, Anton. Stochastic differential equations with coefficients in Sobolev spaces[J]. JOURNAL OF FUNCTIONAL ANALYSIS,2010,259(5):1129-1168. |
APA | Fang, Shizan,Luo, Dejun,&Thalmaier, Anton.(2010).Stochastic differential equations with coefficients in Sobolev spaces.JOURNAL OF FUNCTIONAL ANALYSIS,259(5),1129-1168. |
MLA | Fang, Shizan,et al."Stochastic differential equations with coefficients in Sobolev spaces".JOURNAL OF FUNCTIONAL ANALYSIS 259.5(2010):1129-1168. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。