Empirical likelihood for linear regression models under imputation for missing responses
文献类型:期刊论文
作者 | Wang, QH![]() |
刊名 | CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
![]() |
出版日期 | 2001-12-01 |
卷号 | 29期号:4页码:597-608 |
关键词 | confidence intervals empirical likelihood linear regression imputation missing response regression parameters |
ISSN号 | 0319-5724 |
英文摘要 | The authors study the empirical likelihood method for linear regression models. They show that when missing responses are imputed using least squares predictors, the empirical log-likelihood ratio is asymptotically a weighted sum of chi-square variables with unknown weights. They obtain an adjusted empirical log-likelihood ratio which is asymptotically standard chi-square and hence can be used to construct confidence regions. They also obtain a bootstrap empirical log-likelihood ratio and use its distribution to approximate that of the empirical log-likelihood ratio. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals, and perform better than a normal approximation based method. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000173921500005 |
出版者 | CANADIAN JOURNAL STATISTICS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/16048] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Wang, QH |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, QH,Rao, JNK. Empirical likelihood for linear regression models under imputation for missing responses[J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,2001,29(4):597-608. |
APA | Wang, QH,&Rao, JNK.(2001).Empirical likelihood for linear regression models under imputation for missing responses.CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,29(4),597-608. |
MLA | Wang, QH,et al."Empirical likelihood for linear regression models under imputation for missing responses".CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE 29.4(2001):597-608. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。