Stochastic Lagrangian flows on the group of volume-preserving homeomorphisms of the spheres
文献类型:期刊论文
| 作者 | Luo, Dejun
|
| 刊名 | STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES
![]() |
| 出版日期 | 2015 |
| 卷号 | 87期号:4页码:680-701 |
| 关键词 | Navier-Stokes equation Brownian motion group of volume-preserving homeomorphisms rotation process |
| ISSN号 | 1744-2508 |
| DOI | 10.1080/17442508.2014.995659 |
| 英文摘要 | We consider stochastic differential equations on the group of volume-preserving homeomorphisms of the sphere S-d (d >= 2). The diffusion part is given by the divergence-free eigenvector fields of the Laplacian acting on L-2-vector fields, while the drift is some other divergence-free vector field. We show that the equation generates a unique flow of measure-preserving homeomorphisms when the drift has first-order Sobolev regularity, and derive a formula for the distance between two Lagrangian flows. We also compute the rotation process of two particles on the sphere S-2 when they are close to each other. |
| 语种 | 英语 |
| WOS记录号 | WOS:000360395400007 |
| 出版者 | TAYLOR & FRANCIS LTD |
| 源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/20651] ![]() |
| 专题 | 应用数学研究所 |
| 通讯作者 | Luo, Dejun |
| 作者单位 | Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
| 推荐引用方式 GB/T 7714 | Luo, Dejun. Stochastic Lagrangian flows on the group of volume-preserving homeomorphisms of the spheres[J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES,2015,87(4):680-701. |
| APA | Luo, Dejun.(2015).Stochastic Lagrangian flows on the group of volume-preserving homeomorphisms of the spheres.STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES,87(4),680-701. |
| MLA | Luo, Dejun."Stochastic Lagrangian flows on the group of volume-preserving homeomorphisms of the spheres".STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES 87.4(2015):680-701. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


