Hamilton's Harnack inequality and the W-entropy formula on complete Riemannian manifolds
文献类型:期刊论文
作者 | Li, Xiang-Dong![]() |
刊名 | STOCHASTIC PROCESSES AND THEIR APPLICATIONS
![]() |
出版日期 | 2016-04-01 |
卷号 | 126期号:4页码:1264-1283 |
关键词 | Hamilton's Harnack inequality Gradient estimates Logarithmic heat kernel Witten Laplacian W-entropy formula |
ISSN号 | 0304-4149 |
DOI | 10.1016/j.spa.2015.11.002 |
英文摘要 | In this paper, we prove Hamilton's Harnack inequality and the gradient estimates of the logarithmic heat kernel for the Witten Laplacian on complete Riemannian manifolds. As applications, we prove the W-entropy formula for the Witten Laplacian on complete Riemannian manifolds, and prove a family of logarithmic Sobolev inequalities on complete Riemannian manifolds with natural geometric condition. (C) 2015 Elsevier B.V. All rights reserved. |
语种 | 英语 |
WOS记录号 | WOS:000371837800012 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/22226] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Li, Xiang-Dong |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, 55 Zhongguancun East Rd, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Xiang-Dong. Hamilton's Harnack inequality and the W-entropy formula on complete Riemannian manifolds[J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS,2016,126(4):1264-1283. |
APA | Li, Xiang-Dong.(2016).Hamilton's Harnack inequality and the W-entropy formula on complete Riemannian manifolds.STOCHASTIC PROCESSES AND THEIR APPLICATIONS,126(4),1264-1283. |
MLA | Li, Xiang-Dong."Hamilton's Harnack inequality and the W-entropy formula on complete Riemannian manifolds".STOCHASTIC PROCESSES AND THEIR APPLICATIONS 126.4(2016):1264-1283. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。