Neighbor Distinguishing Total Choice Number of Sparse Graphs via the Combinatorial Nullstellensatz
文献类型:期刊论文
作者 | Qu, Cun-quan1; Ding, Lai-hao1; Wang, Guang-hui1; Yan, Gui-ying2![]() |
刊名 | ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES
![]() |
出版日期 | 2016-06-01 |
卷号 | 32期号:2页码:537-548 |
关键词 | neighbor sum distinguishing total coloring Combinatorial Nullstellensatz neighbor sum distinguishing total choice number |
ISSN号 | 0168-9673 |
DOI | 10.1007/s10255-016-0583-8 |
英文摘要 | Let G = (V, E) be a graph and phi : V boolean OR E -> {1, 2, ... , k} be a total-k-coloring of G. Let f(v)(S(v)) denote the sum(set) of the color of vertex v and the colors of the edges incident with v. The total coloring phi is called neighbor sum distinguishing if (f(u) not equal f(v)) for each edge uv is an element of E(G). We say that phi is neighbor set distinguishing or adjacent vertex distinguishing if S(u) not equal S(v) for each edge uv is an element of E(G). For both problems, we have conjectures that such colorings exist for any graph G if k >= Delta (G) + 3. The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs, which is denoted by mad ( G). In this paper, by using the Combinatorial Nullstellensatz and the discharging method, we prove that these two conjectures hold for sparse graphs in their list versions. More precisely, we prove that every graph G with maximum degree Delta(G) and maximum average degree mad(G) has ch(Sigma)''(G) <= Delta(G) + 3 (where ch(Sigma)'' (G) is the neighbor sum distinguishing total choice number of G) if there exists a pair (k, m) is an element of{(6, 4), (5, 18/5), (4, 16/5)} such that Delta(G) >= k and mad (G) < m. |
资助项目 | National Natural Science Foundation of China[11371355] ; National Natural Science Foundation of China[11471193] ; Foundation for Distinguished Young Scholars of Shandong Province[JQ201501] ; Natural Science Foundation of Shandong Province[ZR2013AM001] ; Independent Innovation Foundation of Shandong University[IFYT14012] ; Fundamental Research Funds of Shandong University |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000375233700028 |
出版者 | SPRINGER HEIDELBERG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/22580] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Wang, Guang-hui |
作者单位 | 1.Shandong Univ, Sch Math, Jinan 250100, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Qu, Cun-quan,Ding, Lai-hao,Wang, Guang-hui,et al. Neighbor Distinguishing Total Choice Number of Sparse Graphs via the Combinatorial Nullstellensatz[J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,2016,32(2):537-548. |
APA | Qu, Cun-quan,Ding, Lai-hao,Wang, Guang-hui,&Yan, Gui-ying.(2016).Neighbor Distinguishing Total Choice Number of Sparse Graphs via the Combinatorial Nullstellensatz.ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,32(2),537-548. |
MLA | Qu, Cun-quan,et al."Neighbor Distinguishing Total Choice Number of Sparse Graphs via the Combinatorial Nullstellensatz".ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES 32.2(2016):537-548. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。