Incompressible limit of solutions of multidimensional steady compressible Euler equations
文献类型:期刊论文
作者 | Chen, Gui-Qiang G.1,2,3; Huang, Feimin1![]() |
刊名 | ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK
![]() |
出版日期 | 2016-06-01 |
卷号 | 67期号:3页码:18 |
关键词 | Multidimensional Incompressible limit Steady flow Euler equations Compressible flow Full Euler flow Homentropic flow Compactness framework Strong convergence |
ISSN号 | 0044-2275 |
DOI | 10.1007/s00033-016-0629-z |
英文摘要 | A compactness framework is formulated for the incompressible limit of approximate solutions with weak uniform bounds with respect to the adiabatic exponent for the steady Euler equations for compressible fluids in any dimension. One of our main observations is that the compactness can be achieved by using only natural weak estimates for the mass conservation and the vorticity. Another observation is that the incompressibility of the limit for the homentropic Euler flow is directly from the continuity equation, while the incompressibility of the limit for the full Euler flow is from a combination of all the Euler equations. As direct applications of the compactness framework, we establish two incompressible limit theorems for multidimensional steady Euler flows through infinitely long nozzles, which lead to two new existence theorems for the corresponding problems for multidimensional steady incompressible Euler equations. |
资助项目 | UK EPSRC Science and Innovation Award[EP/E035027/1] ; UK EPSRC Award[EP/L015811/1] ; Royal Society-Wolfson Research Merit Award ; National Center for Mathematics and Interdisciplinary Sciences ; AMSS ; CAS ; NSFC[11371349] ; NSFC[11371064] ; China Scholarship Council[201204910256] ; CityU Start-Up Grant for New Faculty[7200429] ; Hong Kong under GRF/ECS Grant[9048045 (CityU 21305215)] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000378940400041 |
出版者 | SPRINGER BASEL AG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/23080] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Chen, Gui-Qiang G. |
作者单位 | 1.Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China 3.Univ Oxford, Math Inst, Radcliffe Observ Quarter, Woodstock Rd, Oxford OX2 6GG, England 4.Wuhan Univ Technol, Dept Math, Sch Sci, Wuhan 430070, Hubei, Peoples R China 5.Gran Sasso Sci Inst, Viale Francesco Crispi 7, I-67100 Laquila, Italy 6.Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China 7.City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Gui-Qiang G.,Huang, Feimin,Wang, Tian-Yi,et al. Incompressible limit of solutions of multidimensional steady compressible Euler equations[J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,2016,67(3):18. |
APA | Chen, Gui-Qiang G.,Huang, Feimin,Wang, Tian-Yi,&Xiang, Wei.(2016).Incompressible limit of solutions of multidimensional steady compressible Euler equations.ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,67(3),18. |
MLA | Chen, Gui-Qiang G.,et al."Incompressible limit of solutions of multidimensional steady compressible Euler equations".ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK 67.3(2016):18. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。