中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A characterization of the rate of change of Phi-entropy via an integral form curvature-dimension condition

文献类型:期刊论文

作者Luo, Dejun
刊名ADVANCES IN GEOMETRY
出版日期2016-07-01
卷号16期号:3页码:277-290
关键词Heat equation Phi-entropy curvature-dimension condition second fundamental form reflecting diffusion semigroup
ISSN号1615-715X
DOI10.1515/advgeom-2015-0046
英文摘要Let M be a compact Riemannian manifold without boundary and V : M -> R a smooth function. Denote by P-t and d mu = e(V) dx the semigroup and symmetric measure of the second order differential operator L = Delta + del V center dot del. For some suitable convex function Phi : J -> R defined on an interval I, we consider the Phi-entropy of P(t)f (with respect to mu) for any f is an element of C-infinity (M, J). We show that an integral form curvature-dimension condition is equivalent to an estimate on the rate of change of the Phi-entropy. We also generalize this result to bounded smooth domains of a complete Riemannian manifold.
语种英语
WOS记录号WOS:000381015500002
出版者WALTER DE GRUYTER GMBH
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/23306]  
专题应用数学研究所
通讯作者Luo, Dejun
作者单位Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Luo, Dejun. A characterization of the rate of change of Phi-entropy via an integral form curvature-dimension condition[J]. ADVANCES IN GEOMETRY,2016,16(3):277-290.
APA Luo, Dejun.(2016).A characterization of the rate of change of Phi-entropy via an integral form curvature-dimension condition.ADVANCES IN GEOMETRY,16(3),277-290.
MLA Luo, Dejun."A characterization of the rate of change of Phi-entropy via an integral form curvature-dimension condition".ADVANCES IN GEOMETRY 16.3(2016):277-290.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。