中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A CENTRAL LIMIT THEOREM FOR NESTED OR SLICED LATIN HYPERCUBE DESIGNS

文献类型:期刊论文

作者He, Xu1; Qian, Peter Z. G.2
刊名STATISTICA SINICA
出版日期2016-07-01
卷号26期号:3页码:1117-1128
关键词Computer experiment design of experiment method of moments numerical integration uncertainty quantification
ISSN号1017-0405
DOI10.5705/ss.202015.0240
英文摘要Nested Latin hypercube designs (Qian (2009)) and sliced Latin hypercube designs (Qian (2012)) are extensions of ordinary Latin hypercube designs with special combinational structures. It is known that the mean estimator over the unit cube computed from either of these designs has the same asymptotic variance as its counterpart for an ordinary Latin hypercube design. We derive a central limit theorem to show that the mean estimator of either of these two designs has a limiting normal distribution. This result is useful for making confidence statements for such designs in numerical integration, uncertainty quantification, and sensitivity analysis.
资助项目NSFC[11501550] ; DOE[DE-SC0010548] ; National Science Foundation[CMMI 1233570] ; National Science Foundation[DMS 1055214]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000381591300011
出版者STATISTICA SINICA
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/23587]  
专题应用数学研究所
通讯作者He, Xu
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, 55 East Zhongguancun Rd, Beijing 100190, Peoples R China
2.Univ Wisconsin, Dept Stat, 1300 Univ Ave, Madison, WI 53706 USA
推荐引用方式
GB/T 7714
He, Xu,Qian, Peter Z. G.. A CENTRAL LIMIT THEOREM FOR NESTED OR SLICED LATIN HYPERCUBE DESIGNS[J]. STATISTICA SINICA,2016,26(3):1117-1128.
APA He, Xu,&Qian, Peter Z. G..(2016).A CENTRAL LIMIT THEOREM FOR NESTED OR SLICED LATIN HYPERCUBE DESIGNS.STATISTICA SINICA,26(3),1117-1128.
MLA He, Xu,et al."A CENTRAL LIMIT THEOREM FOR NESTED OR SLICED LATIN HYPERCUBE DESIGNS".STATISTICA SINICA 26.3(2016):1117-1128.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。