中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Mean response estimation with missing response in the presence of high-dimensional covariates

文献类型:期刊论文

作者Li, Yongjin1; Wang, Qihua1,2; Zhu, Liping3; Ding, Xiaobo1
刊名COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
出版日期2017
卷号46期号:2页码:628-643
关键词Central mean subspace Imputation Kernel regression Missing response Weighted-bandwidth
ISSN号0361-0926
DOI10.1080/03610926.2014.1002935
英文摘要This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations.
资助项目National Science Fund for Distinguished Young Scholars in China[10725106] ; National Natural Science Foundation of China[11171331] ; National Natural Science Foundation of China[11331011] ; National Natural Science Foundation of China[11371236] ; National Natural Science Foundation of China[11422107] ; National Natural Science Foundation of China[11201457] ; Natural Science Foundation of SZU ; Henry Fok Education Foundation Fund of Young College Teachers[141002] ; Programs for New Century Excellent Talents[NCET-12-0901] ; Innovative Research Team in University of China[IRT13077] ; Ministry of Education of China ; Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences ; National Center for Mathematics and Interdisciplinary Sciences, CAS
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000386396500010
出版者TAYLOR & FRANCIS INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/23849]  
专题应用数学研究所
通讯作者Ding, Xiaobo
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Shenzhen Univ, Inst Stat Sci, Shenzhen, Guangdong, Peoples R China
3.Renmin Univ China, Inst Stat & Big Data, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, Yongjin,Wang, Qihua,Zhu, Liping,et al. Mean response estimation with missing response in the presence of high-dimensional covariates[J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS,2017,46(2):628-643.
APA Li, Yongjin,Wang, Qihua,Zhu, Liping,&Ding, Xiaobo.(2017).Mean response estimation with missing response in the presence of high-dimensional covariates.COMMUNICATIONS IN STATISTICS-THEORY AND METHODS,46(2),628-643.
MLA Li, Yongjin,et al."Mean response estimation with missing response in the presence of high-dimensional covariates".COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 46.2(2017):628-643.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。