Statistical Inference on Seemingly Unrelated Single-Index Regression Models
文献类型:期刊论文
作者 | He, Bing1; You, Jin-hong2; Chen, Min3![]() |
刊名 | ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES
![]() |
出版日期 | 2016-10-01 |
卷号 | 32期号:4页码:945-956 |
关键词 | seemingly unrelated contemporaneous correlation single-index weighted estimation |
ISSN号 | 0168-9673 |
DOI | 10.1007/s10255-016-0615-4 |
英文摘要 | In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies. |
资助项目 | National Natural Science Foundation of China[11471140] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000387481600013 |
出版者 | SPRINGER HEIDELBERG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/24132] ![]() |
专题 | 应用数学研究所 |
通讯作者 | He, Bing |
作者单位 | 1.Jilin Univ, Sch Math, Changchun 130012, Peoples R China 2.Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | He, Bing,You, Jin-hong,Chen, Min. Statistical Inference on Seemingly Unrelated Single-Index Regression Models[J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,2016,32(4):945-956. |
APA | He, Bing,You, Jin-hong,&Chen, Min.(2016).Statistical Inference on Seemingly Unrelated Single-Index Regression Models.ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,32(4),945-956. |
MLA | He, Bing,et al."Statistical Inference on Seemingly Unrelated Single-Index Regression Models".ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES 32.4(2016):945-956. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。