中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Convex optimization learning of faithful Euclidean distance representations in nonlinear dimensionality reduction

文献类型:期刊论文

作者Ding, Chao1; Qi, Hou-Duo2
刊名MATHEMATICAL PROGRAMMING
出版日期2017-07-01
卷号164期号:1-2页码:341-381
关键词Euclidean distance matrix Convex matrix optimization Multidimensional scaling Nonlinear dimensionality reduction Low-rank matrix Error bounds Random graph models
ISSN号0025-5610
DOI10.1007/s10107-016-1090-7
英文摘要Classical multidimensional scaling only works well when the noisy distances observed in a high dimensional space can be faithfully represented by Euclidean distances in a low dimensional space. Advanced models such as Maximum Variance Unfolding (MVU) and Minimum Volume Embedding (MVE) use Semi-Definite Programming (SDP) to reconstruct such faithful representations. While those SDP models are capable of producing high quality configuration numerically, they suffer two major drawbacks. One is that there exist no theoretically guaranteed bounds on the quality of the configuration. The other is that they are slow in computation when the data points are beyond moderate size. In this paper, we propose a convex optimization model of Euclidean distance matrices. We establish a non-asymptotic error bound for the random graph model with sub-Gaussian noise, and prove that our model produces a matrix estimator of high accuracy when the order of the uniform sample size is roughly the degree of freedom of a low-rank matrix up to a logarithmic factor. Our results partially explain why MVU and MVE often work well. Moreover, the convex optimization model can be efficiently solved by a recently proposed 3-block alternating direction method of multipliers. Numerical experiments show that the model can produce configurations of high quality on large data points that the SDP approach would struggle to cope with.
资助项目Engineering and Physical Science Research Council (UK)[EP/K007645/1] ; National Natural Science Foundation of China[11671387]
WOS研究方向Computer Science ; Operations Research & Management Science ; Mathematics
语种英语
WOS记录号WOS:000403450600014
出版者SPRINGER HEIDELBERG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/25684]  
专题应用数学研究所
通讯作者Qi, Hou-Duo
作者单位1.Chinese Acad Sci, Inst Appl Math, Beijing, Peoples R China
2.Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
推荐引用方式
GB/T 7714
Ding, Chao,Qi, Hou-Duo. Convex optimization learning of faithful Euclidean distance representations in nonlinear dimensionality reduction[J]. MATHEMATICAL PROGRAMMING,2017,164(1-2):341-381.
APA Ding, Chao,&Qi, Hou-Duo.(2017).Convex optimization learning of faithful Euclidean distance representations in nonlinear dimensionality reduction.MATHEMATICAL PROGRAMMING,164(1-2),341-381.
MLA Ding, Chao,et al."Convex optimization learning of faithful Euclidean distance representations in nonlinear dimensionality reduction".MATHEMATICAL PROGRAMMING 164.1-2(2017):341-381.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。