中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Identification of local sparsity and variable selection for varying coefficient additive hazards models

文献类型:期刊论文

作者Qu, Lianqiang1; Song, Xinyuan2; Sun, Liuquan3
刊名COMPUTATIONAL STATISTICS & DATA ANALYSIS
出版日期2018-09-01
卷号125页码:119-135
关键词Additive hazards models Group penalty Kernel smoothing Local sparsity Oracle property Varying coefficients
ISSN号0167-9473
DOI10.1016/j.csda.2018.04.003
英文摘要Varying coefficient models have numerous applications in a wide scope of scientific areas. Existing methods in varying coefficient models have mainly focused on estimation and variable selection. Besides selecting relevant predictors and estimating their effects, identifying the subregions in which varying coefficients are zero is important to deeply understand the local sparse feature of the functional effects of significant predictors. In this article, we propose a novel method to simultaneously conduct variable selection and identify the local sparsity of significant predictors in the context of varying coefficient additive hazards models. This method combines kernel estimation procedure and the idea of group penalty. The asymptotic properties of the resulting estimators are established. Simulation studies demonstrate that the proposed method can effectively select important predictors and simultaneously identify the null regions of varying coefficients. An application to a nursing home data set is presented. (C) 2018 Elsevier B.V. All rights reserved.
资助项目Research Grant Council of the Hong Kong Special Administration Region[GRF 14601115] ; Chinese University of Hong Kong ; National Natural Science Foundation of China[11690015] ; National Natural Science Foundation of China[11771431] ; National Natural Science Foundation of China[11471277] ; Key Laboratory of RCSDS, CAS[2008DP173182]
WOS研究方向Computer Science ; Mathematics
语种英语
WOS记录号WOS:000433655200009
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/30542]  
专题应用数学研究所
通讯作者Qu, Lianqiang
作者单位1.Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
2.Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Qu, Lianqiang,Song, Xinyuan,Sun, Liuquan. Identification of local sparsity and variable selection for varying coefficient additive hazards models[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2018,125:119-135.
APA Qu, Lianqiang,Song, Xinyuan,&Sun, Liuquan.(2018).Identification of local sparsity and variable selection for varying coefficient additive hazards models.COMPUTATIONAL STATISTICS & DATA ANALYSIS,125,119-135.
MLA Qu, Lianqiang,et al."Identification of local sparsity and variable selection for varying coefficient additive hazards models".COMPUTATIONAL STATISTICS & DATA ANALYSIS 125(2018):119-135.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。