Adaptive finite element method for parabolic equations with Dirac measure
文献类型:期刊论文
作者 | Gong, Wei1![]() ![]() |
刊名 | COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
![]() |
出版日期 | 2018 |
卷号 | 328页码:217-241 |
关键词 | Parabolic equation Dirac measure Adaptive finite element method Space-time discretization A posteriori error estimates |
ISSN号 | 0045-7825 |
DOI | 10.1016/j.cma.2017.08.051 |
英文摘要 | In this paper we study the adaptive finite element method for parabolic equations with Dirac measure. Two kinds of problems with separate measure data in time and measure data in space are considered. It is well known that the solutions of such kind of problems may exhibit lower regularity due to the existence of the Dirac measure, and thus fit to adaptive FEM for space discretization and variable time steps for time discretization. For both cases we use piecewise linear and continuous finite elements for the space discretization and backward Euler scheme, or equivalently piecewise constant discontinuous Galerkin method, for the time discretization, the a posteriori error estimates based on energy and L-2 norms for the fully discrete problems are then derived to guide the adaptive procedure. Numerical results are provided at the end of the paper to support our theoretical findings. (C) 2017 Elsevier B.V. All rights reserved. |
资助项目 | National Natural Science Foundation of China[11001027] ; National Natural Science Foundation of China[11571356] ; National Natural Science Foundation of China[11671391] ; National Natural Science Foundation of China[11771053] ; National Natural Science Foundation of China[91530204] ; National Basic Research Program[2011CB309705] ; National Basic Research Program[2012CB821204] |
WOS研究方向 | Engineering ; Mathematics ; Mechanics |
语种 | 英语 |
WOS记录号 | WOS:000416218500010 |
出版者 | ELSEVIER SCIENCE SA |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/124] ![]() |
专题 | 国家数学与交叉科学中心 系统科学研究所 计算数学与科学工程计算研究所 |
通讯作者 | Gong, Wei |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, NCMIS,LSEC, Beijing 100190, Peoples R China 2.Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, NCMIS,LSEC, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Gong, Wei,Liu, Huipo,Yan, Ningning. Adaptive finite element method for parabolic equations with Dirac measure[J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,2018,328:217-241. |
APA | Gong, Wei,Liu, Huipo,&Yan, Ningning.(2018).Adaptive finite element method for parabolic equations with Dirac measure.COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,328,217-241. |
MLA | Gong, Wei,et al."Adaptive finite element method for parabolic equations with Dirac measure".COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 328(2018):217-241. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。