Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach
文献类型:期刊论文
作者 | Wang, QF; Cheng, DZ |
刊名 | APPLIED MATHEMATICS AND COMPUTATION
![]() |
出版日期 | 2005-03-04 |
卷号 | 162期号:1页码:381-401 |
关键词 | Klein-Gordon equations numerical solution finite element methods Gauss-Legendre quadrature Runge-Kutta method |
ISSN号 | 0096-3003 |
DOI | 10.1016/j.amc.2003.12.102 |
英文摘要 | Numerical treatment for damped nonlinear Klein-Gordon equations, based on variational method and finite element approach, is studied. A semi-discrete algorithm is proposed by using quadratic interpolation functions of continuous time and spatial dimension one. The Gauss-Legendre quadrature has been utilized for numerical integrations of nonlinear terms, and Runge-Kutta method is used for solving ordinary differential equation. Finally, three dimensional graphics of numerical solutions are used to demonstrate the numerical results. (C) 2004 Elsevier Inc. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000226859900032 |
出版者 | ELSEVIER SCIENCE INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/1104] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Wang, QF |
作者单位 | Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, QF,Cheng, DZ. Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach[J]. APPLIED MATHEMATICS AND COMPUTATION,2005,162(1):381-401. |
APA | Wang, QF,&Cheng, DZ.(2005).Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach.APPLIED MATHEMATICS AND COMPUTATION,162(1),381-401. |
MLA | Wang, QF,et al."Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach".APPLIED MATHEMATICS AND COMPUTATION 162.1(2005):381-401. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。