中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach

文献类型:期刊论文

作者Wang, QF; Cheng, DZ
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2005-03-04
卷号162期号:1页码:381-401
关键词Klein-Gordon equations numerical solution finite element methods Gauss-Legendre quadrature Runge-Kutta method
ISSN号0096-3003
DOI10.1016/j.amc.2003.12.102
英文摘要Numerical treatment for damped nonlinear Klein-Gordon equations, based on variational method and finite element approach, is studied. A semi-discrete algorithm is proposed by using quadratic interpolation functions of continuous time and spatial dimension one. The Gauss-Legendre quadrature has been utilized for numerical integrations of nonlinear terms, and Runge-Kutta method is used for solving ordinary differential equation. Finally, three dimensional graphics of numerical solutions are used to demonstrate the numerical results. (C) 2004 Elsevier Inc. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000226859900032
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/1104]  
专题中国科学院数学与系统科学研究院
通讯作者Wang, QF
作者单位Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wang, QF,Cheng, DZ. Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach[J]. APPLIED MATHEMATICS AND COMPUTATION,2005,162(1):381-401.
APA Wang, QF,&Cheng, DZ.(2005).Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach.APPLIED MATHEMATICS AND COMPUTATION,162(1),381-401.
MLA Wang, QF,et al."Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach".APPLIED MATHEMATICS AND COMPUTATION 162.1(2005):381-401.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。