A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs
文献类型:期刊论文
作者 | Feng, Ruyong; Gao, Xiao-Shan![]() |
刊名 | JOURNAL OF SYMBOLIC COMPUTATION
![]() |
出版日期 | 2006-07-01 |
卷号 | 41期号:7页码:739-762 |
关键词 | rational general solution first order autonomous ODE rational parametrizations Laurent series Pade approximants polynomial time algorithm |
ISSN号 | 0747-7171 |
DOI | 10.1016/j.jsc.2006.02.002 |
英文摘要 | We give a necessary and sufficient condition for an algebraic ODE to have a rational type general solution. For a first order autonomous ODE F = 0, we give an exact degree bound for its rational solutions, based on the connection between rational solutions of F = 0 and rational parametrizations of the plane algebraic curve defined by F = 0. For a first order autonomous ODE, we further give a polynomial time algorithm for computing a rational general solution if it exists based on the computation of Laurent series solutions and Pade approximants. Experimental results show that the algorithm is quite efficient. (c) 2006 Elsevier Ltd. All rights reserved. |
WOS研究方向 | Computer Science ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000238102900001 |
出版者 | ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/3536] ![]() |
专题 | 系统科学研究所 |
通讯作者 | Gao, Xiao-Shan |
作者单位 | Acad Sinica, AMSS, Inst Syst Sci, Key Lab Math Mechanizat, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Feng, Ruyong,Gao, Xiao-Shan. A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs[J]. JOURNAL OF SYMBOLIC COMPUTATION,2006,41(7):739-762. |
APA | Feng, Ruyong,&Gao, Xiao-Shan.(2006).A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs.JOURNAL OF SYMBOLIC COMPUTATION,41(7),739-762. |
MLA | Feng, Ruyong,et al."A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs".JOURNAL OF SYMBOLIC COMPUTATION 41.7(2006):739-762. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。