中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs

文献类型:期刊论文

作者Feng, Ruyong; Gao, Xiao-Shan
刊名JOURNAL OF SYMBOLIC COMPUTATION
出版日期2006-07-01
卷号41期号:7页码:739-762
关键词rational general solution first order autonomous ODE rational parametrizations Laurent series Pade approximants polynomial time algorithm
ISSN号0747-7171
DOI10.1016/j.jsc.2006.02.002
英文摘要We give a necessary and sufficient condition for an algebraic ODE to have a rational type general solution. For a first order autonomous ODE F = 0, we give an exact degree bound for its rational solutions, based on the connection between rational solutions of F = 0 and rational parametrizations of the plane algebraic curve defined by F = 0. For a first order autonomous ODE, we further give a polynomial time algorithm for computing a rational general solution if it exists based on the computation of Laurent series solutions and Pade approximants. Experimental results show that the algorithm is quite efficient. (c) 2006 Elsevier Ltd. All rights reserved.
WOS研究方向Computer Science ; Mathematics
语种英语
WOS记录号WOS:000238102900001
出版者ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/3536]  
专题系统科学研究所
通讯作者Gao, Xiao-Shan
作者单位Acad Sinica, AMSS, Inst Syst Sci, Key Lab Math Mechanizat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Feng, Ruyong,Gao, Xiao-Shan. A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs[J]. JOURNAL OF SYMBOLIC COMPUTATION,2006,41(7):739-762.
APA Feng, Ruyong,&Gao, Xiao-Shan.(2006).A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs.JOURNAL OF SYMBOLIC COMPUTATION,41(7),739-762.
MLA Feng, Ruyong,et al."A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs".JOURNAL OF SYMBOLIC COMPUTATION 41.7(2006):739-762.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。