中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations

文献类型:期刊论文

作者Liu, Huipo1; Yan, Ningning2
刊名JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
出版日期2007-12-15
卷号209期号:2页码:187-207
关键词optimal control Stokes equations finite element methods superconvergence recovery
ISSN号0377-0427
DOI10.1016/j.cam.2006.10.083
英文摘要In this paper, we derive recovery type superconvergence analysis and a posteriori error estimates for the finite element approximation of the distributed optimal control governed by Stokes equations. We obtain superconvergence results and asymptotically exact a posteriori error estimates by applying two recovery methods, which are the patch recovery technique and the least-squares surface fitting method. Our results are based on some regularity assumption for the Stokes control problems and are applicable to the first order conforming finite element method with regular but nonuniform partitions. (C) 2006 Elsevier B.V. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000253502800007
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/5116]  
专题中国科学院数学与系统科学研究院
通讯作者Liu, Huipo
作者单位1.Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
2.Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Liu, Huipo,Yan, Ningning. Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2007,209(2):187-207.
APA Liu, Huipo,&Yan, Ningning.(2007).Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,209(2),187-207.
MLA Liu, Huipo,et al."Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 209.2(2007):187-207.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。