A new algorithm for computing the minimum Hausdorff distance between two point sets on aline under translation
文献类型:期刊论文
作者 | Li, Banghe1![]() ![]() |
刊名 | INFORMATION PROCESSING LETTERS
![]() |
出版日期 | 2008-04-15 |
卷号 | 106期号:2页码:52-58 |
关键词 | Hausdorff Distance Pattern Recognition Computational Geometry |
ISSN号 | 0020-0190 |
DOI | 10.1016/j.ipl.2007.10.003 |
英文摘要 | To determine the similarity of two point sets is one of the major goals of pattern recognition and computer graphics. One widely studied similarity measure for point sets is the Hausdorff distance. So far, various computational methods have been proposed for computing the minimum Hausdorff distance. In this paper, we propose a new algorithm to compute the minimum Hausdorff distance between two point sets on a line under translation, which outperforms other existing algorithms in terms of efficiency despite its complexity of O((m + n) lg(m + n)), where m and n are the sizes of two point sets. (C) 2007 Elsevier B.V. All rights reserved. |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000255072500002 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/6360] ![]() |
专题 | 系统科学研究所 |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Ctr Bioinformat & Key Lab Math Mech, Beijing 100080, Peoples R China 2.Grad Univ, Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Banghe,Shen, Yuefeng,Li, Bo. A new algorithm for computing the minimum Hausdorff distance between two point sets on aline under translation[J]. INFORMATION PROCESSING LETTERS,2008,106(2):52-58. |
APA | Li, Banghe,Shen, Yuefeng,&Li, Bo.(2008).A new algorithm for computing the minimum Hausdorff distance between two point sets on aline under translation.INFORMATION PROCESSING LETTERS,106(2),52-58. |
MLA | Li, Banghe,et al."A new algorithm for computing the minimum Hausdorff distance between two point sets on aline under translation".INFORMATION PROCESSING LETTERS 106.2(2008):52-58. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。