中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Characteristic set method for differential-difference polynomial systems

文献类型:期刊论文

作者Gao, X. S.1; Van der Hoeven, J.2; Yuan, C. M.1; Zhang, G. L.1
刊名JOURNAL OF SYMBOLIC COMPUTATION
出版日期2009-09-01
卷号44期号:9页码:1137-1163
关键词Characteristic set Differential and difference polynomial Regular ascending chain Irreducible ascending chain Zero decomposition algorithm Perfect ideal membership problem
ISSN号0747-7171
DOI10.1016/j.jsc.2008.02.010
英文摘要In this paper, we present a characteristic set method for mixed differential and difference polynomial systems. We introduce the concepts of coherent, regular, proper irreducible, and strongly irreducible ascending chains and study their properties. We give an algorithm which can be used to decompose the zero set for a finitely generated differential and difference polynomial sets into the union of the zero sets of regular and consistent ascending chains. As a consequence, we solve the perfect ideal membership problem for differential and difference polynomials. (C) 2009 Elsevier Ltd. All rights reserved.
WOS研究方向Computer Science ; Mathematics
语种英语
WOS记录号WOS:000267171200004
出版者ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/7373]  
专题中国科学院数学与系统科学研究院
通讯作者Gao, X. S.
作者单位1.Chinese Acad Sci, KLMM, Inst Syst Sci, AMSS, Beijing 100190, Peoples R China
2.Univ Paris 11, CNRS, Dept Math, F-91405 Orsay, France
推荐引用方式
GB/T 7714
Gao, X. S.,Van der Hoeven, J.,Yuan, C. M.,et al. Characteristic set method for differential-difference polynomial systems[J]. JOURNAL OF SYMBOLIC COMPUTATION,2009,44(9):1137-1163.
APA Gao, X. S.,Van der Hoeven, J.,Yuan, C. M.,&Zhang, G. L..(2009).Characteristic set method for differential-difference polynomial systems.JOURNAL OF SYMBOLIC COMPUTATION,44(9),1137-1163.
MLA Gao, X. S.,et al."Characteristic set method for differential-difference polynomial systems".JOURNAL OF SYMBOLIC COMPUTATION 44.9(2009):1137-1163.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。