中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Minimal achievable approximation ratio for MAX-MQ in finite fields

文献类型:期刊论文

作者Zhao, Shang-Wei; Gao, Xiao-Shan
刊名THEORETICAL COMPUTER SCIENCE
出版日期2009-05-17
卷号410期号:21-23页码:2285-2290
关键词Multivariate quadratic polynomial equations MAX-MQ Approximation algorithm Approximation ratio
ISSN号0304-3975
DOI10.1016/j.tcs.2009.02.003
英文摘要Given a multivariate quadratic polynomial system in a finite field F,, the problem MAX-MQ is to find a solution satisfying the maximal number of equations. We prove that the probability of a random assignment satisfying a non-degenerate quadratic equation is at least 1/q - O(q(-n/2)), where n is the number of the variables in the equation. Consequently, the random assignment provides a polynomial-time approximation algorithm with approximation ratio q + O(q(-n/2)) for non-degenerate MAX-MQ. For large n, the ratio is close to q. According to a result by Hastad, it is NP-hard to approximate MAX-MQ with an approximation ratio of q - is an element of for a small positive number is an element of. Therefore, the minimal approximation ratio that can be achieved in polynomial time for MAX-MQ is q. (C) 2009 Elsevier B.V. All rights reserved.
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000266178200031
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/9093]  
专题系统科学研究所
通讯作者Gao, Xiao-Shan
作者单位Chinese Acad Sci, AMSS, Key Lab Math Mechanizat, Inst Syst Sci, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Shang-Wei,Gao, Xiao-Shan. Minimal achievable approximation ratio for MAX-MQ in finite fields[J]. THEORETICAL COMPUTER SCIENCE,2009,410(21-23):2285-2290.
APA Zhao, Shang-Wei,&Gao, Xiao-Shan.(2009).Minimal achievable approximation ratio for MAX-MQ in finite fields.THEORETICAL COMPUTER SCIENCE,410(21-23),2285-2290.
MLA Zhao, Shang-Wei,et al."Minimal achievable approximation ratio for MAX-MQ in finite fields".THEORETICAL COMPUTER SCIENCE 410.21-23(2009):2285-2290.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。