中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimal estimation of shell thickness in Cutland's construction of Wiener measure

文献类型:期刊论文

作者Li, BH; Li, YQ
刊名PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
出版日期1998
卷号126期号:1页码:225-229
关键词shell thickness Wiener measure *-finite Euclidean space
ISSN号0002-9939
英文摘要In Cutland's construction of Wiener measure, he used the product of Gaussian measures on *R-N, where N is an infinite integer. It is mentioned by Cutland and Ng that for the product measure gamma, gamma({x : R-1 less than or equal to \\x\\ less than or equal to R-2}) similar or equal to 1, where R-1 = 1 - (logN)N-1/2(-1/2) and R-2 = 1 + MN-1/2 with M any positive infinite number. We prove here that R-1 may be replaced by 1 - mN(-1/2) with m any positive infinite number. This is the optimal estimation for the shell thickness. It is also proved that gamma({x : \\x\\ < 1}) similar or equal to gamma({x : \\x\\ > 1}) similar or equal to 1/2. And for the *Lebesgue measure mu, mu({x : \\2\\ less than or equal to r}) is finite and not infinitesimal iff r = (2 pi e)(-1/2)N(1/2(1+1/N)e(a/N) with a finite, while for the *Lebesgue area of the sphere SN-1(r), r should be (2 pi e)(-1/2)N(1/2)e(a/N).
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000071753600030
出版者AMER MATHEMATICAL SOC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/13580]  
专题中国科学院数学与系统科学研究院
通讯作者Li, BH
作者单位Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Li, BH,Li, YQ. Optimal estimation of shell thickness in Cutland's construction of Wiener measure[J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,1998,126(1):225-229.
APA Li, BH,&Li, YQ.(1998).Optimal estimation of shell thickness in Cutland's construction of Wiener measure.PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,126(1),225-229.
MLA Li, BH,et al."Optimal estimation of shell thickness in Cutland's construction of Wiener measure".PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 126.1(1998):225-229.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。