Elliptic function solutions of (2+1)-dimensional long wave - Short wave resonance interaction equation via a sinh-Gordon expansion method
文献类型:期刊论文
作者 | Yan, ZY![]() |
刊名 | ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
![]() |
出版日期 | 2004 |
卷号 | 59期号:1-2页码:23-28 |
关键词 | nonlinear wave equation sinh-Gordon equation Jacobi elliptic function soliton solution |
ISSN号 | 0932-0784 |
英文摘要 | With the aid of symbolic computation, the sinh-Gordon equation expansion method is extended to seek Jacobi elliptic function solutions of (2+1)-dimensional long wave-short wave resonance interaction equation, which describe the long and short waves propagation at an angle to each other in a two-layer fluid. As a result, new Jacobi elliptic function solutions are obtained. When the modulus m of Jacobi elliptic functions approaches 1, we also deduce the singular oliton solutions; while when the modulus m --> 0, we get the trigonometric function solutions. |
语种 | 英语 |
WOS记录号 | WOS:000220404900003 |
出版者 | VERLAG Z NATURFORSCH |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/19522] ![]() |
专题 | 系统科学研究所 |
通讯作者 | Yan, ZY |
作者单位 | Chinese Acad Sci, Key Lab Math Mechanizat, Inst Syst Sci, AMSS, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Yan, ZY. Elliptic function solutions of (2+1)-dimensional long wave - Short wave resonance interaction equation via a sinh-Gordon expansion method[J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES,2004,59(1-2):23-28. |
APA | Yan, ZY.(2004).Elliptic function solutions of (2+1)-dimensional long wave - Short wave resonance interaction equation via a sinh-Gordon expansion method.ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES,59(1-2),23-28. |
MLA | Yan, ZY."Elliptic function solutions of (2+1)-dimensional long wave - Short wave resonance interaction equation via a sinh-Gordon expansion method".ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES 59.1-2(2004):23-28. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。