中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Elliptic function solutions of (2+1)-dimensional long wave - Short wave resonance interaction equation via a sinh-Gordon expansion method

文献类型:期刊论文

作者Yan, ZY
刊名ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
出版日期2004
卷号59期号:1-2页码:23-28
关键词nonlinear wave equation sinh-Gordon equation Jacobi elliptic function soliton solution
ISSN号0932-0784
英文摘要With the aid of symbolic computation, the sinh-Gordon equation expansion method is extended to seek Jacobi elliptic function solutions of (2+1)-dimensional long wave-short wave resonance interaction equation, which describe the long and short waves propagation at an angle to each other in a two-layer fluid. As a result, new Jacobi elliptic function solutions are obtained. When the modulus m of Jacobi elliptic functions approaches 1, we also deduce the singular oliton solutions; while when the modulus m --> 0, we get the trigonometric function solutions.
语种英语
WOS记录号WOS:000220404900003
出版者VERLAG Z NATURFORSCH
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/19522]  
专题系统科学研究所
通讯作者Yan, ZY
作者单位Chinese Acad Sci, Key Lab Math Mechanizat, Inst Syst Sci, AMSS, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Yan, ZY. Elliptic function solutions of (2+1)-dimensional long wave - Short wave resonance interaction equation via a sinh-Gordon expansion method[J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES,2004,59(1-2):23-28.
APA Yan, ZY.(2004).Elliptic function solutions of (2+1)-dimensional long wave - Short wave resonance interaction equation via a sinh-Gordon expansion method.ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES,59(1-2),23-28.
MLA Yan, ZY."Elliptic function solutions of (2+1)-dimensional long wave - Short wave resonance interaction equation via a sinh-Gordon expansion method".ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES 59.1-2(2004):23-28.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。