中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Potential-based online policy iteration algorithms for Markov decision processes

文献类型:期刊论文

作者Fang, HT; Cao, XR
刊名IEEE TRANSACTIONS ON AUTOMATIC CONTROL
出版日期2004-04-01
卷号49期号:4页码:493-505
关键词Markov decision process potential recursive optimization
ISSN号0018-9286
DOI10.1109/TAC.2004.825647
英文摘要Performance potentials play a crucial role in performance sensitivity analysis and policy iteration of Markov decision processes. The potentials can be estimated on a single sample path of a Markov process. In this paper, we propose two potential-based online policy iteration algorithms for performance optimization of Markov systems. The algorithms are based on online estimation of potentials and stochastic approximation. We prove that with these two algorithms the optimal. policy can be attained after it finite number of iterations. A simulation example,is given to illustrate the main ideas and the convergence rates of the algorithms.
WOS研究方向Automation & Control Systems ; Engineering
语种英语
WOS记录号WOS:000220884800003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/19741]  
专题系统科学研究所
通讯作者Fang, HT
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Lab Syst & Control, Beijing 100080, Peoples R China
2.Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Fang, HT,Cao, XR. Potential-based online policy iteration algorithms for Markov decision processes[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2004,49(4):493-505.
APA Fang, HT,&Cao, XR.(2004).Potential-based online policy iteration algorithms for Markov decision processes.IEEE TRANSACTIONS ON AUTOMATIC CONTROL,49(4),493-505.
MLA Fang, HT,et al."Potential-based online policy iteration algorithms for Markov decision processes".IEEE TRANSACTIONS ON AUTOMATIC CONTROL 49.4(2004):493-505.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。