Dembowski-Ostrom polynomials from reversed Dickson polynomials
文献类型:期刊论文
作者 | Zhang Xiaoming1; Wu Baofeng1,2; Liu Zhuojun1![]() |
刊名 | JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY
![]() |
出版日期 | 2016-02-01 |
卷号 | 29期号:1页码:259-271 |
关键词 | Almost perfect nonlinear function Dembowski-Ostrom polynomial linearized polynomial reversed Dickson polynomial |
ISSN号 | 1009-6124 |
DOI | 10.1007/s11424-015-4110-4 |
英文摘要 | This paper gives a full classification of Dembowski-Ostrom polynomials derived from the compositions of reversed Dickson polynomials and monomials over finite fields of characteristic 2. The authors also classify almost perfect nonlinear functions among all such Dembowski-Ostrom polynomials based on a general result describing when the composition of an arbitrary linearized polynomial and a monomial of the form is almost perfect nonlinear. It turns out that almost perfect nonlinear functions derived from reversed Dickson polynomials are all extended affine equivalent to the well-known Gold functions. |
资助项目 | National Basic Research Program of China[2011CB302400] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000370162300016 |
出版者 | SPRINGER HEIDELBERG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/22030] ![]() |
专题 | 系统科学研究所 |
通讯作者 | Wu Baofeng |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mechanizat, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang Xiaoming,Wu Baofeng,Liu Zhuojun. Dembowski-Ostrom polynomials from reversed Dickson polynomials[J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,2016,29(1):259-271. |
APA | Zhang Xiaoming,Wu Baofeng,&Liu Zhuojun.(2016).Dembowski-Ostrom polynomials from reversed Dickson polynomials.JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,29(1),259-271. |
MLA | Zhang Xiaoming,et al."Dembowski-Ostrom polynomials from reversed Dickson polynomials".JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY 29.1(2016):259-271. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。