中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Matrices of SL that are the Product of Two Skew-Symmetric Matrices

文献类型:期刊论文

作者Dong, Lei; Huang, Lei; Shao, Changpeng; Wen, Yong
刊名ADVANCES IN APPLIED CLIFFORD ALGEBRAS
出版日期2017-03-01
卷号27期号:1页码:475-489
关键词Oriented projective geometry Line geometry SL(4, R) Product of two skew-symmetric matrices SL(4, R)-Jordan form
ISSN号0188-7009
DOI10.1007/s00006-016-0701-y
英文摘要The Jordan forms of matrices that are the product of two skew-symmetric matrices over a field of characteristic have been a research topic in linear algebra since the early twentieth century. For such a matrix, its Jordan form is not necessarily real, nor does the matrix similarity transformation change the matrix into the Jordan form. In 3-D oriented projective geometry, orientation-preserving projective transformations are matrices of , and those matrices of that are the product of two skew-symmetric matrices are the generators of the group . The canonical forms of orientation-preserving projective transformations under the group action of -similarity transformations, called -Jordan forms, are more useful in geometric applications than complex-valued Jordan forms. In this paper, we find all the -Jordan forms of the matrices of that are the product of two skew-symmetric matrices, and divide them into six classes, so that each class has an unambiguous geometric interpretation in 3-D oriented projective geometry. We then consider the lifts of these transformations to SO(3, 3) by extending the action of from points to lines in space, so that in the vector space spanned by the Plucker coordinates of lines these projective transformations become special orthogonal transformations, and the six classes are lifted to six different rotations in 2-D planes of .
资助项目National High-tech R and D Program of China (863 Program)[2015AA011802]
WOS研究方向Mathematics ; Physics
语种英语
WOS记录号WOS:000396031500035
出版者SPRINGER BASEL AG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/24952]  
专题系统科学研究所
通讯作者Huang, Lei
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mech, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Dong, Lei,Huang, Lei,Shao, Changpeng,et al. Matrices of SL that are the Product of Two Skew-Symmetric Matrices[J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS,2017,27(1):475-489.
APA Dong, Lei,Huang, Lei,Shao, Changpeng,&Wen, Yong.(2017).Matrices of SL that are the Product of Two Skew-Symmetric Matrices.ADVANCES IN APPLIED CLIFFORD ALGEBRAS,27(1),475-489.
MLA Dong, Lei,et al."Matrices of SL that are the Product of Two Skew-Symmetric Matrices".ADVANCES IN APPLIED CLIFFORD ALGEBRAS 27.1(2017):475-489.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。