Numerical integrations and unit resolution multipliers for domain decomposition methods with nonmatching grids
文献类型:期刊论文
作者 | Hu, Q![]() |
刊名 | COMPUTING
![]() |
出版日期 | 2005-03-01 |
卷号 | 74期号:2页码:101-129 |
关键词 | domain decomposition nonmatching grids mortar element numerical integration error estimate unit resolution multiplier smooth basis |
ISSN号 | 0010-485X |
DOI | 10.1007/s00607-004-0093-z |
英文摘要 | In this paper, we are concerned with the non-overlapping domain decomposition method (DDM) with nonmatching grids for three-dimensional problems. The weak continuity of the DDM solution on the interface is imposed by some Lagrange multiplier. We shall first analyze the influence of the numerical integrations over the interface on the (non-conforming) approximate solution. Then we will propose a simple approach to construct multiplier spaces, one of which can be simply spanned by some smooth basis functions with local compact supports, and thus makes the numerical integrations on the interface rather simple and inexpensive. Also it is shown this multiplier space can generate an optimal approximate solution. Numerical results are presented to compare the new method with the point to point method widely used in engineering. |
语种 | 英语 |
WOS记录号 | WOS:000227964900002 |
出版者 | SPRINGER WIEN |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/1929] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Hu, Q |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Hu, Q. Numerical integrations and unit resolution multipliers for domain decomposition methods with nonmatching grids[J]. COMPUTING,2005,74(2):101-129. |
APA | Hu, Q.(2005).Numerical integrations and unit resolution multipliers for domain decomposition methods with nonmatching grids.COMPUTING,74(2),101-129. |
MLA | Hu, Q."Numerical integrations and unit resolution multipliers for domain decomposition methods with nonmatching grids".COMPUTING 74.2(2005):101-129. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。