中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Numerical integrations and unit resolution multipliers for domain decomposition methods with nonmatching grids

文献类型:期刊论文

作者Hu, Q
刊名COMPUTING
出版日期2005-03-01
卷号74期号:2页码:101-129
关键词domain decomposition nonmatching grids mortar element numerical integration error estimate unit resolution multiplier smooth basis
ISSN号0010-485X
DOI10.1007/s00607-004-0093-z
英文摘要In this paper, we are concerned with the non-overlapping domain decomposition method (DDM) with nonmatching grids for three-dimensional problems. The weak continuity of the DDM solution on the interface is imposed by some Lagrange multiplier. We shall first analyze the influence of the numerical integrations over the interface on the (non-conforming) approximate solution. Then we will propose a simple approach to construct multiplier spaces, one of which can be simply spanned by some smooth basis functions with local compact supports, and thus makes the numerical integrations on the interface rather simple and inexpensive. Also it is shown this multiplier space can generate an optimal approximate solution. Numerical results are presented to compare the new method with the point to point method widely used in engineering.
语种英语
WOS记录号WOS:000227964900002
出版者SPRINGER WIEN
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/1929]  
专题计算数学与科学工程计算研究所
通讯作者Hu, Q
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Hu, Q. Numerical integrations and unit resolution multipliers for domain decomposition methods with nonmatching grids[J]. COMPUTING,2005,74(2):101-129.
APA Hu, Q.(2005).Numerical integrations and unit resolution multipliers for domain decomposition methods with nonmatching grids.COMPUTING,74(2),101-129.
MLA Hu, Q."Numerical integrations and unit resolution multipliers for domain decomposition methods with nonmatching grids".COMPUTING 74.2(2005):101-129.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。