LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENTS FOR PLANE ELASTICITY
文献类型:期刊论文
作者 | Hu, Jun1,2; Shi, Zhong-Ci3![]() |
刊名 | SIAM JOURNAL ON NUMERICAL ANALYSIS
![]() |
出版日期 | 2007 |
卷号 | 46期号:1页码:88-102 |
关键词 | mixed method nonconforming finite element elasticity rectangular |
ISSN号 | 0036-1429 |
DOI | 10.1137/060669681 |
英文摘要 | In this paper, we present two stable rectangular nonconforming mixed finite element methods for the equations of linear elasticity in two space dimensions which produce direct approximations for the stress and displacement. In the first method, the normal stress space of the matrix-valued stress space is taken as the second order rotated Brezzi-Douglas-Fortin-Marini element space [F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991], the enriched nonconforming rotated Q(1) element [Q. Lin, L. Tobiska, and A. H. Zhou, IMA J. Numer. Anal., 25 (2005), pp. 160-181] is taken for the shear stress, and the lowest order Raviart-Thomas element space [P. A. Raviart and J. M. Thomas, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. 606, Springer-Verlag, New York, 1977, pp. 292-315] is employed to approximate the vector displacement field. The second method is obtained from the first one through dropping the interior degrees of the normal stress on each element. A first order convergence rate is obtained for both the stress and the displacement for these methods based on the superconvergence of the enriched nonconforming rotated Q(1) element. |
资助项目 | NSFC[10601003] ; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry ; Foundation for the Author of National Excellent Doctoral Dissertation of the People's Republic of China[200718] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000208043800004 |
出版者 | SIAM PUBLICATIONS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/4149] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Hu, Jun |
作者单位 | 1.Peking Univ, LMAM, Beijing 100871, Peoples R China 2.Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China 3.Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Hu, Jun,Shi, Zhong-Ci. LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENTS FOR PLANE ELASTICITY[J]. SIAM JOURNAL ON NUMERICAL ANALYSIS,2007,46(1):88-102. |
APA | Hu, Jun,&Shi, Zhong-Ci.(2007).LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENTS FOR PLANE ELASTICITY.SIAM JOURNAL ON NUMERICAL ANALYSIS,46(1),88-102. |
MLA | Hu, Jun,et al."LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENTS FOR PLANE ELASTICITY".SIAM JOURNAL ON NUMERICAL ANALYSIS 46.1(2007):88-102. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。