中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Left conjugate gradient method for non-Hermitian linear systems

文献类型:期刊论文

作者Wang, Li-Ping2; Dai, Yu-Hong1
刊名NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
出版日期2008-12-01
卷号15期号:10页码:891-909
关键词left conjugate direction method left conjugate gradient method non-Hermitian linear system breakdown block left conjugate gradient method
ISSN号1070-5325
DOI10.1002/nla.600
英文摘要Recently, Yuan et al. (BIT: Numer, Math. 2004; 44(1):189-207) proposed the left conjugate gradient (LCG) method for real positive-definite linear systems. This paper aims to generalize their method for solving complex non-Hermitian linear systems. to avoid the breakdown that possibly occurred in the LCG method, we also propose the block left conjugate direction method and the block LCG (BLCG) method. It is found that no breakdown occurs in the BLCG method and the block idea also applies to the real nonsymmetric case. Numerical experiments demonstrate the usefulness of the proposed LCG method. Copyright (C) John Wiley & Sons, Ltd.
资助项目Chinese NSF[10171104] ; Chinese NSF[40233029]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000261918100002
出版者JOHN WILEY & SONS LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/5879]  
专题计算数学与科学工程计算研究所
通讯作者Dai, Yu-Hong
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China
2.Nanjing Univ Aeronaut & Astronaut, Coll Sci, Dept Math, Nanjing 210016, Peoples R China
推荐引用方式
GB/T 7714
Wang, Li-Ping,Dai, Yu-Hong. Left conjugate gradient method for non-Hermitian linear systems[J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS,2008,15(10):891-909.
APA Wang, Li-Ping,&Dai, Yu-Hong.(2008).Left conjugate gradient method for non-Hermitian linear systems.NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS,15(10),891-909.
MLA Wang, Li-Ping,et al."Left conjugate gradient method for non-Hermitian linear systems".NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS 15.10(2008):891-909.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。