中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Convergence conditions for splitting iteration methods for non-Hermitian linear systems

文献类型:期刊论文

作者Wang, Li1,2; Bai, Zhong-Zhi1
刊名LINEAR ALGEBRA AND ITS APPLICATIONS
出版日期2008-01-15
卷号428期号:2-3页码:453-468
关键词non-Hermitian linear systems splitting iteration method convergence
ISSN号0024-3795
DOI10.1016/j.laa.2007.03.001
英文摘要Necessary and sufficient convergence conditions are studied for splitting iteration methods for non-Hermitian system of linear equations when the coefficient matrix is non-singular. When this theory is specialized to the generalized saddle-point problem, we obtain convergence theorem for a class of modified accelerated overrelaxation iteration methods, which include the Uzawa and the inexact Uzawa methods as special cases. Moreover, we apply this theory to the two-stage iteration methods for non-Hermitian positive definite linear systems, and obtain sufficient conditions for guaranteeing the convergence of these methods. (c) 2007 Elsevier Inc. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000252172800005
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/6620]  
专题计算数学与科学工程计算研究所
通讯作者Bai, Zhong-Zhi
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
2.Nanjing Normal Univ, Sch Math & Comp Sci, Dept Computat Math, Nanjing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Li,Bai, Zhong-Zhi. Convergence conditions for splitting iteration methods for non-Hermitian linear systems[J]. LINEAR ALGEBRA AND ITS APPLICATIONS,2008,428(2-3):453-468.
APA Wang, Li,&Bai, Zhong-Zhi.(2008).Convergence conditions for splitting iteration methods for non-Hermitian linear systems.LINEAR ALGEBRA AND ITS APPLICATIONS,428(2-3),453-468.
MLA Wang, Li,et al."Convergence conditions for splitting iteration methods for non-Hermitian linear systems".LINEAR ALGEBRA AND ITS APPLICATIONS 428.2-3(2008):453-468.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。