Error estimates of triangular finite elements under a weak angle condition
文献类型:期刊论文
作者 | Mao, Shipeng![]() ![]() |
刊名 | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
![]() |
出版日期 | 2009-08-01 |
卷号 | 230期号:1页码:329-331 |
关键词 | Interpolation error estimates Bramble-Hilbert lemma Maximal angle condition |
ISSN号 | 0377-0427 |
DOI | 10.1016/j.cam.2008.11.008 |
英文摘要 | In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A, Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma. (C) 2008 Elsevier B.V. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000267237500029 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/8800] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Mao, Shipeng |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Mao, Shipeng,Shi, Zhongci. Error estimates of triangular finite elements under a weak angle condition[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2009,230(1):329-331. |
APA | Mao, Shipeng,&Shi, Zhongci.(2009).Error estimates of triangular finite elements under a weak angle condition.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,230(1),329-331. |
MLA | Mao, Shipeng,et al."Error estimates of triangular finite elements under a weak angle condition".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 230.1(2009):329-331. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。