中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Error estimates of triangular finite elements under a weak angle condition

文献类型:期刊论文

作者Mao, Shipeng; Shi, Zhongci
刊名JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
出版日期2009-08-01
卷号230期号:1页码:329-331
关键词Interpolation error estimates Bramble-Hilbert lemma Maximal angle condition
ISSN号0377-0427
DOI10.1016/j.cam.2008.11.008
英文摘要In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A, Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma. (C) 2008 Elsevier B.V. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000267237500029
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/8800]  
专题计算数学与科学工程计算研究所
通讯作者Mao, Shipeng
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Mao, Shipeng,Shi, Zhongci. Error estimates of triangular finite elements under a weak angle condition[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2009,230(1):329-331.
APA Mao, Shipeng,&Shi, Zhongci.(2009).Error estimates of triangular finite elements under a weak angle condition.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,230(1),329-331.
MLA Mao, Shipeng,et al."Error estimates of triangular finite elements under a weak angle condition".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 230.1(2009):329-331.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。