Local Multigrid in H(curl)
文献类型:期刊论文
作者 | Hiptmair, Ralf1; Zheng, Weiying2![]() |
刊名 | JOURNAL OF COMPUTATIONAL MATHEMATICS
![]() |
出版日期 | 2009-09-01 |
卷号 | 27期号:5页码:573-603 |
关键词 | Edge elements Local multigrid Stable multilevel splittings Subspace correction theory Regular decompositions of H(curl, Omega) Helmholtz-type decompositions Local mesh refinement |
ISSN号 | 0254-9409 |
DOI | 10.4208/jcm.2009.27.5.012 |
英文摘要 | We consider H(curl, Omega)-elliptic variational problems on bounded Lipschitz polyhedra and their finite element Galerkin discretization by means of lowest order edge elements. We assume that the underlying tetrahedral mesh has been created by successive local mesh refinement, either by local uniform refinement with hanging nodes or bisection refinement. In this setting we develop a convergence theory for the the so-called local multigrid correction scheme with hybrid smoothing. We establish that its convergence rate is uniform with respect to the number of refinement steps. The proof relies on corresponding results for local multigrid in a H(1)(Omega)-context along with local discrete Helmholtz-type decompositions of the edge element space. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000267903700003 |
出版者 | VSP BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/9068] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Hiptmair, Ralf |
作者单位 | 1.Swiss Fed Inst Technol, SAM, CH-8092 Zurich, Switzerland 2.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Hiptmair, Ralf,Zheng, Weiying. Local Multigrid in H(curl)[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,2009,27(5):573-603. |
APA | Hiptmair, Ralf,&Zheng, Weiying.(2009).Local Multigrid in H(curl).JOURNAL OF COMPUTATIONAL MATHEMATICS,27(5),573-603. |
MLA | Hiptmair, Ralf,et al."Local Multigrid in H(curl)".JOURNAL OF COMPUTATIONAL MATHEMATICS 27.5(2009):573-603. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。