中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Local Multigrid in H(curl)

文献类型:期刊论文

作者Hiptmair, Ralf1; Zheng, Weiying2
刊名JOURNAL OF COMPUTATIONAL MATHEMATICS
出版日期2009-09-01
卷号27期号:5页码:573-603
关键词Edge elements Local multigrid Stable multilevel splittings Subspace correction theory Regular decompositions of H(curl, Omega) Helmholtz-type decompositions Local mesh refinement
ISSN号0254-9409
DOI10.4208/jcm.2009.27.5.012
英文摘要We consider H(curl, Omega)-elliptic variational problems on bounded Lipschitz polyhedra and their finite element Galerkin discretization by means of lowest order edge elements. We assume that the underlying tetrahedral mesh has been created by successive local mesh refinement, either by local uniform refinement with hanging nodes or bisection refinement. In this setting we develop a convergence theory for the the so-called local multigrid correction scheme with hybrid smoothing. We establish that its convergence rate is uniform with respect to the number of refinement steps. The proof relies on corresponding results for local multigrid in a H(1)(Omega)-context along with local discrete Helmholtz-type decompositions of the edge element space.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000267903700003
出版者VSP BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/9068]  
专题计算数学与科学工程计算研究所
通讯作者Hiptmair, Ralf
作者单位1.Swiss Fed Inst Technol, SAM, CH-8092 Zurich, Switzerland
2.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Hiptmair, Ralf,Zheng, Weiying. Local Multigrid in H(curl)[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,2009,27(5):573-603.
APA Hiptmair, Ralf,&Zheng, Weiying.(2009).Local Multigrid in H(curl).JOURNAL OF COMPUTATIONAL MATHEMATICS,27(5),573-603.
MLA Hiptmair, Ralf,et al."Local Multigrid in H(curl)".JOURNAL OF COMPUTATIONAL MATHEMATICS 27.5(2009):573-603.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。