中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Convergence of a standard adaptive nonconforming finite element method with optimal complexity

文献类型:期刊论文

作者Mao, Shipeng1; Zhao, Xuying1,2; Shi, Zhongci1
刊名APPLIED NUMERICAL MATHEMATICS
出版日期2010-07-01
卷号60期号:7页码:673-688
关键词Adaptive methods Nonconforming finite elements A posteriori error estimation Convergence rate Optimal computational complexity
ISSN号0168-9274
DOI10.1016/j.apnum.2010.03.010
英文摘要In this paper, we analyze the convergence and optimal complexity of the usual simple adaptive nonconforming finite element method by using Dorfler collective marking strategy. Based on several basic ingredients, such as the estimator reduction, quasi-orthogonality, local upper bound and so on, we eventually show the convergence of the adaptive algorithm by establishing the reduction of some total error and the quasi-optimal convergence rate. Our analysis does not need the relation between the nonconforming P(1) element and the mixed Raviart-Thomas element. The results of numerical experiments confirm that our adaptive algorithm is optimal. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000278860100002
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/9318]  
专题计算数学与科学工程计算研究所
通讯作者Zhao, Xuying
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Mao, Shipeng,Zhao, Xuying,Shi, Zhongci. Convergence of a standard adaptive nonconforming finite element method with optimal complexity[J]. APPLIED NUMERICAL MATHEMATICS,2010,60(7):673-688.
APA Mao, Shipeng,Zhao, Xuying,&Shi, Zhongci.(2010).Convergence of a standard adaptive nonconforming finite element method with optimal complexity.APPLIED NUMERICAL MATHEMATICS,60(7),673-688.
MLA Mao, Shipeng,et al."Convergence of a standard adaptive nonconforming finite element method with optimal complexity".APPLIED NUMERICAL MATHEMATICS 60.7(2010):673-688.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。