中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
HETEROGENEOUS MULTISCALE FINITE ELEMENT METHOD WITH NOVEL NUMERICAL INTEGRATION SCHEMES

文献类型:期刊论文

作者Du, Rui; Ming, Pingbing
刊名COMMUNICATIONS IN MATHEMATICAL SCIENCES
出版日期2010-12-01
卷号8期号:4页码:863-885
关键词Heterogeneous multiscale method finite element method numerical integration schemes elliptic homogenization problems
ISSN号1539-6746
英文摘要In this paper we introduce two novel numerical integration schemes within the framework of the heterogeneous multiscale method (HMM), when the finite element method is used as the macroscopic solver, to resolve the elliptic problem with a multiscale coefficient. For non-self-adjoint elliptic problems, optimal convergence rate is proved for the proposed methods, which naturally yields a new strategy for refining the macro-micro meshes and a criterion for determining the size of the microcell. Numerical results following this strategy show that the new methods significantly reduce the computational cost without loss of accuracy.
资助项目National Natural Science Foundation of China[10871197] ; National Natural Science Foundation of China[10932011] ; National Basic Research Program[2005CB321704]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000283985000004
出版者INT PRESS BOSTON, INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/10520]  
专题计算数学与科学工程计算研究所
通讯作者Du, Rui
作者单位Chinese Acad Sci, AMSS, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Du, Rui,Ming, Pingbing. HETEROGENEOUS MULTISCALE FINITE ELEMENT METHOD WITH NOVEL NUMERICAL INTEGRATION SCHEMES[J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES,2010,8(4):863-885.
APA Du, Rui,&Ming, Pingbing.(2010).HETEROGENEOUS MULTISCALE FINITE ELEMENT METHOD WITH NOVEL NUMERICAL INTEGRATION SCHEMES.COMMUNICATIONS IN MATHEMATICAL SCIENCES,8(4),863-885.
MLA Du, Rui,et al."HETEROGENEOUS MULTISCALE FINITE ELEMENT METHOD WITH NOVEL NUMERICAL INTEGRATION SCHEMES".COMMUNICATIONS IN MATHEMATICAL SCIENCES 8.4(2010):863-885.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。