Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems
文献类型:期刊论文
作者 | Chen, Huangxin1; Xu, Xuejun1![]() |
刊名 | NUMERISCHE MATHEMATIK
![]() |
出版日期 | 2010-09-01 |
卷号 | 116期号:3页码:383-419 |
ISSN号 | 0029-599X |
DOI | 10.1007/s00211-010-0307-6 |
英文摘要 | Recently an adaptive nonconforming finite element method (ANFEM) has been developed by Carstensen and Hoppe (in Numer Math 103:251-266, 2006). In this paper, we extend the result to some nonsymmetric and indefinite problems. The main tools in our analysis are a posteriori error estimators and a quasi-orthogonality property. In this case, we need to overcome two main difficulties: one stems from the nonconformity of the finite element space, the other is how to handle the effect of a nonsymmetric and indefinite bilinear form. An appropriate adaptive nonconforming finite element method featuring a marking strategy based on the comparison of the a posteriori error estimator and a volume term is proposed for the lowest order Crouzeix-Raviart element. It is shown that the ANFEM is a contraction for the sum of the energy error and a scaled volume term between two consecutive adaptive loops. Moreover, quasi-optimality in the sense of quasi-optimal algorithmic complexity can be shown for the ANFEM. The results of numerical experiments confirm the theoretical findings. |
资助项目 | NSF[DMS-0511624] ; NSF[DMS-0707602] ; NSF[DMS-0810176] ; NSF[DMS-0811153] ; NSF[DMS-0914788] ; National Science Foundation (NSF) of China[10731060] ; Special funds for major state basic research projects (973)[2005CB321701] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000281397600002 |
出版者 | SPRINGER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/10715] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Chen, Huangxin |
作者单位 | 1.Chinese Acad Sci, LSEC, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Univ Augsburg, Inst Math, D-86159 Augsburg, Germany 3.Univ Houston, Dept Math, Houston, TX 77204 USA |
推荐引用方式 GB/T 7714 | Chen, Huangxin,Xu, Xuejun,Hoppe, Ronald H. W.. Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems[J]. NUMERISCHE MATHEMATIK,2010,116(3):383-419. |
APA | Chen, Huangxin,Xu, Xuejun,&Hoppe, Ronald H. W..(2010).Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems.NUMERISCHE MATHEMATIK,116(3),383-419. |
MLA | Chen, Huangxin,et al."Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems".NUMERISCHE MATHEMATIK 116.3(2010):383-419. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。