High-accuracy approximations for eigenvalue problems by the Carey non-conforming finite element
文献类型:期刊论文
作者 | Lin, Q; Wu, DS |
刊名 | COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING
![]() |
出版日期 | 1999 |
卷号 | 15期号:1页码:19-31 |
关键词 | Carey non-conforming finite element interpolation postprocessing eigenvalue problems high-accuracy approximations |
ISSN号 | 1069-8299 |
英文摘要 | In this paper the Carey non-conforming finite element is considered for solving eigenvalue problems of the second-order elliptic operator. Based on an interpolation postprocessing, high-accuracy estimates of both eigenfunctions and eigenvalues are obtained: parallel to Pi(2h)(2)u(h) - u parallel to(1) less than or equal to Ch(2)parallel to u parallel to(3) 0 less than or equal to <(lambda)over cap>(h) - lambda less than or equal to Ch(4)parallel to u parallel to(3)(2) Here, Pi(2h)(2) is an interpolation operator, (lambda, u) and (lambda(h), u(h)) are eigenpairs for the exact problem and its Carey element approximations, respectively, and lambda(h) is defined by the Rayleigh ratio of Pi(2h)(2)u(h). Copyright (C) 1999 John Wiley & Sons, Ltd. |
WOS研究方向 | Engineering ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000078409500003 |
出版者 | JOHN WILEY & SONS LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/14111] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Lin, Q |
作者单位 | Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Lin, Q,Wu, DS. High-accuracy approximations for eigenvalue problems by the Carey non-conforming finite element[J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING,1999,15(1):19-31. |
APA | Lin, Q,&Wu, DS.(1999).High-accuracy approximations for eigenvalue problems by the Carey non-conforming finite element.COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING,15(1),19-31. |
MLA | Lin, Q,et al."High-accuracy approximations for eigenvalue problems by the Carey non-conforming finite element".COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING 15.1(1999):19-31. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。