中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Exponential dichotomy and trichotomy for difference equations

文献类型:期刊论文

作者Alonso, AI; Hong, JL; Obaya, R
刊名COMPUTERS & MATHEMATICS WITH APPLICATIONS
出版日期1999-07-01
卷号38期号:1页码:41-49
关键词exponential dichotomy exponential trichotomy roughness almost periodic sequences
ISSN号0898-1221
英文摘要In this paper, a roughness theorem of exponential dichotomy and trichotomy of linear difference equations is proved. It is also shown that if an almost periodic difference equation has an exponential dichotomy on a sufficiently long finite interval, then it has one on (-infinity, +infinity). (C) 1999 Elsevier Science Ltd. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000081191900006
出版者PERGAMON-ELSEVIER SCIENCE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/14681]  
专题计算数学与科学工程计算研究所
通讯作者Alonso, AI
作者单位1.Univ Valladolid, Dept Matemat Aplicada Ingn, E-47011 Valladolid, Spain
2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Alonso, AI,Hong, JL,Obaya, R. Exponential dichotomy and trichotomy for difference equations[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS,1999,38(1):41-49.
APA Alonso, AI,Hong, JL,&Obaya, R.(1999).Exponential dichotomy and trichotomy for difference equations.COMPUTERS & MATHEMATICS WITH APPLICATIONS,38(1),41-49.
MLA Alonso, AI,et al."Exponential dichotomy and trichotomy for difference equations".COMPUTERS & MATHEMATICS WITH APPLICATIONS 38.1(1999):41-49.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。