Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem
文献类型:期刊论文
作者 | Ming, PB; Shi, ZC |
刊名 | ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE
![]() |
出版日期 | 2000-09-01 |
卷号 | 34期号:5页码:1051-1067 |
关键词 | dual combined FEM non-Newtonian flow parameter-independent error bounds |
ISSN号 | 0764-583X |
英文摘要 | This is the second part of the paper for a Non-Newtonian flow. Dual combined Finite Element Methods are used to investigate the little parameter-dependent problem arising in a nonlinear three field version of the Stokes system for incompressible fluids, where the viscosity obeys a general law including the Carreau's law and the Power law. Certain parameter-independent error bounds are obtained which solved the problem proposed by Baranger in [4] in a unifying way. We also give some stable finite element spaces by exemplifying the abstract B-B inequality. The continuous approximation for the extra stress is achieved as a by-product of the new method. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000165196500008 |
出版者 | E D P SCIENCES |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/15159] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Ming, PB |
作者单位 | Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Ming, PB,Shi, ZC. Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem[J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE,2000,34(5):1051-1067. |
APA | Ming, PB,&Shi, ZC.(2000).Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem.ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE,34(5),1051-1067. |
MLA | Ming, PB,et al."Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem".ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE 34.5(2000):1051-1067. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。