中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem

文献类型:期刊论文

作者Ming, PB; Shi, ZC
刊名ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE
出版日期2000-09-01
卷号34期号:5页码:1051-1067
关键词dual combined FEM non-Newtonian flow parameter-independent error bounds
ISSN号0764-583X
英文摘要This is the second part of the paper for a Non-Newtonian flow. Dual combined Finite Element Methods are used to investigate the little parameter-dependent problem arising in a nonlinear three field version of the Stokes system for incompressible fluids, where the viscosity obeys a general law including the Carreau's law and the Power law. Certain parameter-independent error bounds are obtained which solved the problem proposed by Baranger in [4] in a unifying way. We also give some stable finite element spaces by exemplifying the abstract B-B inequality. The continuous approximation for the extra stress is achieved as a by-product of the new method.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000165196500008
出版者E D P SCIENCES
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/15159]  
专题中国科学院数学与系统科学研究院
通讯作者Ming, PB
作者单位Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Ming, PB,Shi, ZC. Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem[J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE,2000,34(5):1051-1067.
APA Ming, PB,&Shi, ZC.(2000).Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem.ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE,34(5),1051-1067.
MLA Ming, PB,et al."Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem".ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE 34.5(2000):1051-1067.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。