中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems

文献类型:期刊论文

作者Bai, ZZ
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2000-03-15
卷号109期号:2-3页码:273-285
关键词non-Hermitian linear systems convergence property Krylov subspace method the Chebyshev polynomials error bound
ISSN号0096-3003
英文摘要The convergence of the Krylov subspace methods, e.g., Full Orthogonal Method (FOM) and Generalized Minimal Residual Method (GMRES), etc., for solving large non-Hermitian linear systems is studied in a unified and detailed way when the coefficient matrix is defective; in particular, when its spectrum lies in the open right (left) half plane or is on the real axis. Related theoretical error bounds are established, which reveal some intrinsic relationships between the convergence properties and the eigen-characteristics of the coefficient matrix. These results not only generalize all the known ones for the diagonalizable matrices in the literature, but also sharp the corresponding estimates in Jia (Acta Mathematica Sinica (New Series) 14 (1998) 507-518). (C) 2000 Elsevier Science Inc. All rights reserved. AMS classifications: 65F10; 41A10.
语种英语
WOS记录号WOS:000085105100013
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/15592]  
专题中国科学院数学与系统科学研究院
通讯作者Bai, ZZ
作者单位Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Bai, ZZ. Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems[J]. APPLIED MATHEMATICS AND COMPUTATION,2000,109(2-3):273-285.
APA Bai, ZZ.(2000).Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems.APPLIED MATHEMATICS AND COMPUTATION,109(2-3),273-285.
MLA Bai, ZZ."Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems".APPLIED MATHEMATICS AND COMPUTATION 109.2-3(2000):273-285.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。