Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems
文献类型:期刊论文
作者 | Bai, ZZ |
刊名 | APPLIED MATHEMATICS AND COMPUTATION
![]() |
出版日期 | 2000-03-15 |
卷号 | 109期号:2-3页码:273-285 |
关键词 | non-Hermitian linear systems convergence property Krylov subspace method the Chebyshev polynomials error bound |
ISSN号 | 0096-3003 |
英文摘要 | The convergence of the Krylov subspace methods, e.g., Full Orthogonal Method (FOM) and Generalized Minimal Residual Method (GMRES), etc., for solving large non-Hermitian linear systems is studied in a unified and detailed way when the coefficient matrix is defective; in particular, when its spectrum lies in the open right (left) half plane or is on the real axis. Related theoretical error bounds are established, which reveal some intrinsic relationships between the convergence properties and the eigen-characteristics of the coefficient matrix. These results not only generalize all the known ones for the diagonalizable matrices in the literature, but also sharp the corresponding estimates in Jia (Acta Mathematica Sinica (New Series) 14 (1998) 507-518). (C) 2000 Elsevier Science Inc. All rights reserved. AMS classifications: 65F10; 41A10. |
语种 | 英语 |
WOS记录号 | WOS:000085105100013 |
出版者 | ELSEVIER SCIENCE INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/15592] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Bai, ZZ |
作者单位 | Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Bai, ZZ. Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems[J]. APPLIED MATHEMATICS AND COMPUTATION,2000,109(2-3):273-285. |
APA | Bai, ZZ.(2000).Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems.APPLIED MATHEMATICS AND COMPUTATION,109(2-3),273-285. |
MLA | Bai, ZZ."Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems".APPLIED MATHEMATICS AND COMPUTATION 109.2-3(2000):273-285. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。