A predictor-corrector algorithm for QSDP combining Dikin-type and Newton centering steps
文献类型:期刊论文
作者 | Nie, JW; Yuan, YX |
刊名 | ANNALS OF OPERATIONS RESEARCH
![]() |
出版日期 | 2001 |
卷号 | 103页码:115-133 |
关键词 | semi-definite programming quadratic term potential function central path predictor step corrector step Dikin-type step Newton centering step |
ISSN号 | 0254-5330 |
英文摘要 | Recently, we have extended SDP by adding a quadratic term in the objective function and give a potential reduction algorithm using NT directions. This paper presents a predictor-corrector algorithm using both Dikin-type and Newton centering steps and studies properties of Dikin-type step. In this algorithm, when the condition K(XS) is less than a given number K-0, we use Dikin-type step. Otherwise, Newton centering step is taken. In both cases, step-length is determined by line search. We show that at,least a constant reduction in the potential function is guaranteed. Moreover the algorithm is proved to terminate in O(rootn log(1/epsilon)) steps. In the end of this paper, we discuss how to compute search direction (DeltaX, DeltaS) using the conjugate gradient method. |
WOS研究方向 | Operations Research & Management Science |
语种 | 英语 |
WOS记录号 | WOS:000173045500007 |
出版者 | KLUWER ACADEMIC PUBL |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/16580] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Yuan, YX |
作者单位 | Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Nie, JW,Yuan, YX. A predictor-corrector algorithm for QSDP combining Dikin-type and Newton centering steps[J]. ANNALS OF OPERATIONS RESEARCH,2001,103:115-133. |
APA | Nie, JW,&Yuan, YX.(2001).A predictor-corrector algorithm for QSDP combining Dikin-type and Newton centering steps.ANNALS OF OPERATIONS RESEARCH,103,115-133. |
MLA | Nie, JW,et al."A predictor-corrector algorithm for QSDP combining Dikin-type and Newton centering steps".ANNALS OF OPERATIONS RESEARCH 103(2001):115-133. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。