中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A family of hybrid conjugate gradient methods for unconstrained optimization

文献类型:期刊论文

作者Dai, YH
刊名MATHEMATICS OF COMPUTATION
出版日期2003
卷号72期号:243页码:1317-1328
关键词unconstrained optimization conjugate gradient method line search descent property global convergence
ISSN号0025-5718
英文摘要Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. This paper proposes a three-parameter family of hybrid conjugate gradient methods. Two important features of the family are that (i) it can avoid the propensity of small steps, namely, if a small step is generated away from the solution point, the next search direction will be close to the negative gradient direction; and (ii) its descent property and global convergence are likely to be achieved provided that the line search satisfies the Wolfe conditions. Some numerical results with the family are also presented.
语种英语
WOS记录号WOS:000182344400012
出版者AMER MATHEMATICAL SOC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/19037]  
专题计算数学与科学工程计算研究所
通讯作者Dai, YH
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Dai, YH. A family of hybrid conjugate gradient methods for unconstrained optimization[J]. MATHEMATICS OF COMPUTATION,2003,72(243):1317-1328.
APA Dai, YH.(2003).A family of hybrid conjugate gradient methods for unconstrained optimization.MATHEMATICS OF COMPUTATION,72(243),1317-1328.
MLA Dai, YH."A family of hybrid conjugate gradient methods for unconstrained optimization".MATHEMATICS OF COMPUTATION 72.243(2003):1317-1328.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。