Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem
文献类型:期刊论文
作者 | Zhang, S![]() |
刊名 | APPLIED MATHEMATICS AND COMPUTATION
![]() |
出版日期 | 2004-11-05 |
卷号 | 158期号:2页码:307-317 |
关键词 | preconditioned GMRES method nonsymmetric and indefinite elliptic problem finite element method |
ISSN号 | 0096-3003 |
DOI | 10.1016/j.amc.2003.08.121 |
英文摘要 | In this paper, a class of preconditioners for GMRES method are proposed for solving linear systems arising from discretization second-order nonsymmetric and indefinite elliptic problems by finite element method. The convergence of GMRES method is verified and the rate of convergence is shown. The generality of our result enables us to apply not only any known preconditioners designed for symmetric positive definite problems, but also many other preconditioners based on original operator to nonsymmetric and indefinite problems without losing optimality. (C) 2003 Published by Elsevier Inc. |
语种 | 英语 |
WOS记录号 | WOS:000224594700002 |
出版者 | ELSEVIER SCIENCE INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/19223] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Zhang, S |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Computing, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, S. Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem[J]. APPLIED MATHEMATICS AND COMPUTATION,2004,158(2):307-317. |
APA | Zhang, S.(2004).Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem.APPLIED MATHEMATICS AND COMPUTATION,158(2),307-317. |
MLA | Zhang, S."Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem".APPLIED MATHEMATICS AND COMPUTATION 158.2(2004):307-317. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。