中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem

文献类型:期刊论文

作者Zhang, S
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2004-11-05
卷号158期号:2页码:307-317
关键词preconditioned GMRES method nonsymmetric and indefinite elliptic problem finite element method
ISSN号0096-3003
DOI10.1016/j.amc.2003.08.121
英文摘要In this paper, a class of preconditioners for GMRES method are proposed for solving linear systems arising from discretization second-order nonsymmetric and indefinite elliptic problems by finite element method. The convergence of GMRES method is verified and the rate of convergence is shown. The generality of our result enables us to apply not only any known preconditioners designed for symmetric positive definite problems, but also many other preconditioners based on original operator to nonsymmetric and indefinite problems without losing optimality. (C) 2003 Published by Elsevier Inc.
语种英语
WOS记录号WOS:000224594700002
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/19223]  
专题计算数学与科学工程计算研究所
通讯作者Zhang, S
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Computing, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zhang, S. Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem[J]. APPLIED MATHEMATICS AND COMPUTATION,2004,158(2):307-317.
APA Zhang, S.(2004).Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem.APPLIED MATHEMATICS AND COMPUTATION,158(2),307-317.
MLA Zhang, S."Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem".APPLIED MATHEMATICS AND COMPUTATION 158.2(2004):307-317.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。