中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimal L-infinity Estimates for Galerkin Methods for Nonlinear Singular Two-point Boundary Value Problems

文献类型:期刊论文

作者Zhang, Xu1; Shi, Zhong-ci2
刊名ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES
出版日期2015
卷号31期号:3页码:719-728
关键词singular two-point boundary value problems symmetric Galerkin method maximum norm error estimate superconvergence local mesh refinement
ISSN号0168-9673
DOI10.1007/s10255-015-0498-9
英文摘要In this paper, we apply the symmetric Galerkin methods to the numerical solutions of a kind of singular linear two-point boundary value problems. We estimate the error in the maximum norm. For the sake of obtaining full superconvergence uniformly at all nodal points, we introduce local mesh refinements. Then we extend these results to a class of nonlinear problems. Finally, we present some numerical results which confirm our theoretical conclusions.
资助项目Scientific Research Foundation for the Doctor, Nanjing University of Aeronautics and Astronautics[1008-907359]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000359825200011
出版者SPRINGER HEIDELBERG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/20549]  
专题计算数学与科学工程计算研究所
通讯作者Zhang, Xu
作者单位1.Nanjing Univ Aeronaut & Astronaut, Nanjing 210016, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Xu,Shi, Zhong-ci. Optimal L-infinity Estimates for Galerkin Methods for Nonlinear Singular Two-point Boundary Value Problems[J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,2015,31(3):719-728.
APA Zhang, Xu,&Shi, Zhong-ci.(2015).Optimal L-infinity Estimates for Galerkin Methods for Nonlinear Singular Two-point Boundary Value Problems.ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,31(3),719-728.
MLA Zhang, Xu,et al."Optimal L-infinity Estimates for Galerkin Methods for Nonlinear Singular Two-point Boundary Value Problems".ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES 31.3(2015):719-728.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。