FINITE ELEMENT METHOD AND ITS ERROR ESTIMATES FOR THE TIME OPTIMAL CONTROLS OF HEAT EQUATION
文献类型:期刊论文
作者 | Gong, Wei1![]() ![]() |
刊名 | INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
![]() |
出版日期 | 2016 |
卷号 | 13期号:2页码:265-279 |
关键词 | Time optimal control problems finite element method error estimates |
ISSN号 | 1705-5105 |
英文摘要 | In this paper, we discuss the time optimal control problems governed by heat equation. The variational discretization concept is introduced for the approximation of the control, and the semi-discrete finite element method is applied for the controlled heat equation. We prove optimal a priori error estimate for the optimal time T, and quasi-optimal estimates for the optimal control u, the related state y and adjoint state p. |
资助项目 | National Basic Research Program of China[2012CB821204] ; National Natural Science Foundation of China[11201464] ; National Natural Science Foundation of China[91330115] ; National Natural Science Foundation of China[11171337] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000373023200007 |
出版者 | ISCI-INST SCIENTIFIC COMPUTING & INFORMATION |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/22380] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Gong, Wei; Yan, Ningning |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, NCMIS,LSEC, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Gong, Wei,Yan, Ningning. FINITE ELEMENT METHOD AND ITS ERROR ESTIMATES FOR THE TIME OPTIMAL CONTROLS OF HEAT EQUATION[J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING,2016,13(2):265-279. |
APA | Gong, Wei,&Yan, Ningning.(2016).FINITE ELEMENT METHOD AND ITS ERROR ESTIMATES FOR THE TIME OPTIMAL CONTROLS OF HEAT EQUATION.INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING,13(2),265-279. |
MLA | Gong, Wei,et al."FINITE ELEMENT METHOD AND ITS ERROR ESTIMATES FOR THE TIME OPTIMAL CONTROLS OF HEAT EQUATION".INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING 13.2(2016):265-279. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。